Proceedings of the Zoological Society

, Volume 66, Issue 2, pp 105–118

Earthworm Communities in the Pineapple (Ananus comosus) and Mixed Fruit Plantations of West Tripura, India

Research Article


Present studies on the community characteristics of earthworms revealed the occurrence of 11 species of earthworms in the pineapple (Ananus comosus) and 14 species in the mixed fruit plantations of west Tripura (India). While 9 species of earthworms namely Drawida assamensis, Drawida papillifer papillifer, Drawida nepalensis, Kanchuria sp., Metaphire houlleti, Eutyphoeus gigas, Eutyphoeus scutarius, Eutyphoeus comillahnus and Pontoscolex corethrurus are of common occurrence to both the pineapple and the mixed fruit plantations, two and five earthworm species namely Kanchuria sumerianus, Eutyphoeus sp. and Metaphire posthuma, Perionyx excavatus, Lampito mauritii, Amynthus alexandri, Eutyphoeus gammiei are restricted to the pineapple and the mixed fruit plantations respectively. Earthworms were found mostly within 15 cm depth of soils having temperature 25–25.8 °C, moisture 18.8–22.4 %, water holding capacity 26–31.7 % and organic matter content 2.4–4.0 %. Mean earthworm densities (158 ind. m−2) was significantly higher (p < 0.01, t = 9.67) and biomass (36.67 g m−2) significantly lower (p < 0.01, t = −5.98) in the pineapple plantation than the mixed fruit plantation (density 93 ind. m−2, biomass 56 g m−2). High density value of earthworms in pineapple plantation is linked with dominance of D. assamensis and high biomass value in mixed fruit plantation was due to the higher relative abundance of larger species like E. gigas, E. scutarius, E. comillahnus and E. gammiei. Compared to the mixed fruit plantation, significantly (p < 0.05) higher index of dominance, lower index of diversity, species richness index and species evenness were recorded in the pineapple plantation.


Earthworm community Pineapple plantation Biodiversity Dominance Species richness 


  1. Anderson, J.M., and J.S.I. Ingram. 1993. Tropical soil biology and fertility—a handbook of methods, II ed. Wallingford: CAB International.Google Scholar
  2. Bartholomew, D.P., R.E. Paull, and K.G. Rohrback. 2003. The pineapple: Botany, production and used. Wallingford: CABI Publishing.CrossRefGoogle Scholar
  3. Behera, B., S. Giri, N.C. Dash, and B.K. Senapati. 1999. Earthworm bioindicators of forest land use pattern. Indian Forester 124: 273–281.Google Scholar
  4. Bhadauria, T., P.S. Ramakrishnan, and K.N. Srivastava. 2000. Diversity and distribution of endemic and exotic earthworms in natural and regenerating ecosystems in the central Himalayas, India. Soil Biology & Biochemistry 32: 2045–2054.CrossRefGoogle Scholar
  5. Blackshaw, R.P., S.E. Donovan, S. Hazarika, R. Bol, and E.R. Dixon. 2007. Earthworm responses to long term agricultural management practices: Spatial relationships with soil properties. European Journal of Soil Biology 43: S171–S175.CrossRefGoogle Scholar
  6. Blanchart, E., and J.M. Julka. 1997. Influence of forest disturbance on earthworm (Oligocheata) communities in the western ghats (South india). Soil Biology & Biochemistry 29: 303–306.CrossRefGoogle Scholar
  7. Cesarz, S., N. Fahrenholz, S. Migge-Kleian, C. Planter, and M. Schaefer. 2007. Earthworm communities in relation to tree diversity in a deciduous forest. European Journal of Soil Biology 43: 61–67.CrossRefGoogle Scholar
  8. Chaudhuri, P.S., and G. Bhattacharjee. 2005. Earthworms of Tripura (India). Ecology Environment and Conservation 11: 295–301.Google Scholar
  9. Chaudhuri, P.S., and S. Nath. 2011. Community structure of earthworms under rubber plantations and mixed forests in Tripura, India. Journal of Environmental Biology 32: 537–541.PubMedGoogle Scholar
  10. Chaudhuri, P.S., S. Nath, and R. Paliwal. 2008. Earthworm population of rubber plantation (Hevea brasilensis) in Tripura, India. Tropical Ecology 49(2): 225–234.Google Scholar
  11. Chaudhuri, P.S., S. Nath, S. Bhattacharjee, and R. Paliwal. 2009. Biomass, density of earthworm under rubber plantation (Hevea brasilensis) in Tripura, India. The Bioscan 4(3): 475–479.Google Scholar
  12. Coddington, J.A., L.H. Young, and F.A. Coyle. 1996. Estimating spider species richness in a southern Appalachian cove hardwood forest. The Journal of Arachnology 24: 111–128.Google Scholar
  13. Colwell, R.K., A. Chao, N.J. Gotelli, S.Y. Lin, C.X. Mao, R.L. Chazdon, and T. Longino. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5: 3–21.CrossRefGoogle Scholar
  14. Connel, J.H. 1963. Territorial behavior and dispersion in some marine invertebrates. Researches in population ecology 5: 87–101.CrossRefGoogle Scholar
  15. d’Eeckenbrugge, G.C., G.M. Sanewski, M.K. Smith, M.F. Duval, and F. Leal. 2011. Ananus. In Wild crop relatives: Genomic and breeding resources, tropical and subtropical fruits, ed. C. Kole. Heidelberg: Springer.Google Scholar
  16. Dash, M.C., and S.P. Dash. 2009. Fundamentals of ecology. New Delhi: Tata McGraw-Hill Education Pvt Ltd.Google Scholar
  17. Dash, M.C., and U.C. Patra. 1977. Density, biomass and energy budget o a tropical earthworm population from a grass site in Orissa, India. Reve d’ Ecologie et Biologie du Sols 14: 461–471.Google Scholar
  18. Decaëns, T., and J.J. Jiménez. 2002. Earthworm communities under an agricultural intensification gradient in Colombia. Plant and Soil 240: 133–143.CrossRefGoogle Scholar
  19. Decaens, T., L. Mariani, N. Betancourt, and J.J. Jimenez. 2003. Seed dispersion by surface casting activities of earthworms in Colombian grasslands. Acta Oecologica 24: 175–185.CrossRefGoogle Scholar
  20. Decaens, T., P. Margerie, M. Aubert, M. Hedde, and F. Bureau. 2008. Assembly rules within earthworm communities in North-Western France—a regional analysis. Applied Soil Ecology 39: 321–335.CrossRefGoogle Scholar
  21. Dey, A., S. Nath, and P.S. Chaudhuri. 2012. Impact of monoculture (rubber and pineapple) practice on the community characteristics of earthworms in West Tripura (India). NeBIO 3(1): 53–58.Google Scholar
  22. Duhour, A., C. Costa, F. Momo, L. Falco, and L. Malacalza. 2009. Response of earthworm communities to soil disturbance: Fractal dimension of soil and species rank-abundance curve. Applied Soil Ecology 43: 83–88.CrossRefGoogle Scholar
  23. Edwards, C.A., and P.J. Bolen. 1996. Biology and ecology of earthworms. London: Chapman and Hall.Google Scholar
  24. Fragoso, C., and P. Lavelle. 1987. The earthworm community of a tropical rain forest. In On earthworms, ed. A.M. Bonvieini-Pagliani, and P. Omodeo. Itali: Mucchi Editore.Google Scholar
  25. Fragoso, C., and P. Lavelle. 1992. Earthworm communities of tropical rain forests. Soil Biology & Biochemistry 24: 1397–1408.CrossRefGoogle Scholar
  26. Fragoso, C., P. Lavelle, E. Blanchart, B.K. Senapati, J.J. Jimenz, M.A. Martinez, T. Decaens, and J. Tondoh. 1999. Earthworm communities of tropical agro-ecosystem: Origin, structure and influence of management practices. In Earthworm management in tropical agro-ecosystems, ed. P. Lavelle, L. Brusaard, and P. Hendrix. Wallingford: CAB International.Google Scholar
  27. Ghosh, R., J. Chakraborty, and D. Ghosh. 2008. Peroxidase activity of two cultivars (Kew and Queen) of ripe pineapple (Ananas cosmosus) of Tripura. Journal of Applied Bioscience 34(1): 106–109.Google Scholar
  28. Gonzalez, G., X. Zou, A. Sabat, and N. Fetcher. 1999. Earthworm abundance and distribution pattern in contrasting plant communities within a tropical wet forest in Puerto Rico. Caribbean Journal of Science 35(1–2): 93–100.Google Scholar
  29. Gotelli, N.J., and R.K. Colwell. 2001. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecological Letters 4: 379–391.CrossRefGoogle Scholar
  30. Hendrix, P.F., and P.J. Bolen. 2002. Exotic earthworm invasions in North America: Ecological and policy implications. BioScience 52(9): 1–11.CrossRefGoogle Scholar
  31. Hendrix, P.J., B.R. Muller, R.R. Bruce, G.W. Langdale, and R.W. Parmelee. 1992. Abundance and distribution of earthworms in relation to landscape factors on the Georgia Piedmont, USA. Soil Biology & Biochemistry 24: 1357–1361.CrossRefGoogle Scholar
  32. Jimenez, J.J., J.P. Rossi, and P. Lavelle. 2001. Spatial distribution of earthworms in acid-soil savannas of eastern plains of Colombia. Applied Soil Ecology 17: 267–278.CrossRefGoogle Scholar
  33. Joshi, N., M. Dabral, and K. Maikhuri. 2010. Density, biomass and species richness of earthworms in agroecosystems of Garhwal Himalaya, India. Tropical Natural History 10(2): 171–179.Google Scholar
  34. Kale, R.D. 1997. Earthworms and soil. Proceedings of National Academy of Science India 67(B): 13–24.Google Scholar
  35. Kale, R.D., and N. Karmegam. 2010. The role of earthworms in tropics with emphasis on indian ecosystems. Applied Environmental Soil Science 2010. doi:10.1155/2010/414356.
  36. Karaca, A. 2011. Biology of earthworms. Berlin: Springer.Google Scholar
  37. Kolmogorov, A. 1933. Sulla determinazione empirica di una legge di distribuzione. Giornalle dell Instituto Italiano degli Attuari 4: 1–11.Google Scholar
  38. Kotcon, J.B. 2011. Population dynamics of earthworms in organic farming systems. In Biology of earthworms, ed. A. Karaca, 209–310. Berlin: Springer.Google Scholar
  39. Krebs, C.J. 1989. Ecological methodology. New York: Harper and Row Publishers.Google Scholar
  40. Krebs, C.J. 1999. Ecological methodology, II ed. New York, USA: Benjamin Cummings.Google Scholar
  41. Krishnamoorthy, R.V. 1985. Competition and coexistence in a tropical earthworm community in a farm garden near Bangalore. Journal of Soil Biology & Ecology 5: 33–47.Google Scholar
  42. Lavelle, P. 1974. Les vers de terre dela savanne de lomto, in analyse d’un Ecosystem Tropical Humide: La Savanne de Lampo (Cote d’lvoire). Bull. De Liasion de chercheurs de Lamto 5: 133–136.Google Scholar
  43. Lee, K.E. 1985. Earthworms: Their ecology and relationship with soil and land use. Sydney: Academic Press.Google Scholar
  44. Lim, T.K. 2012. Edible medicinal and non-medicinal plants: volume 1, Fruits. Springer Science + Business Media B. V.Google Scholar
  45. Magurran, A.E. 1988. Ecological diversity and its measurement. London: Chapman and Hall.CrossRefGoogle Scholar
  46. Magurran, A.E. 2004. Measuring biological diversity. UK: Blackwell.Google Scholar
  47. Mainoo, N.O.K., S. Barrington, J.K. Whalen, and L. Sampedro. 2011. Pilot-scale vermicomposting of pineapple wastes with earthworms native to Accra, Ghana. Bioresource Technology 100: 5872–5875.CrossRefGoogle Scholar
  48. Mao, C.X., and R.K. Colwell. 2005. Estimation of species richness: Mixture models, the role of rare species, and inferential challenges. Ecology 86: 1143–1153.CrossRefGoogle Scholar
  49. Martin, T.G., B.A. Wintel, J.R. Rhodes, P.M. Kuhnert, S.A. Field, S.J. Low-Choy, A. Tyre, and H.P. Possingham. 2005. Zero tolerance ecology: Improving ecological inference by modelling the source of zero observations. Ecological Letters 8: 1235–1246.CrossRefGoogle Scholar
  50. Martinez, A.F., H. Quintero, and C.E. Fragoso. 2006. Earthworm communities in forest and pastures of the Colombian Andes. Caribbean Journal of Science 42(3): 301–310.Google Scholar
  51. Menhinick, E.F. 1964. A comparison of some species diversity indices applied to samples of field insects. Ecology 45: 859–861.CrossRefGoogle Scholar
  52. Montgomery, D.C., E.A. Peck, and G.G. Vining. 2007. Introduction to linear regression analysis. Singapore: Wiley.Google Scholar
  53. Morisita, M. 1959. Measuring of the dispersion of individual and analysis of distribution patterns. Memoirs of the Faculty of Science Kyushu University Series E Biological Sciences 2: 215–235.Google Scholar
  54. Najar, I.A., and A.B. Khan. 2011. Earthworm communities of Kashmir valley, India. Tropical Ecology 52(2): 151–162.Google Scholar
  55. Pagano, M., and K. Gauvreau. 2004. Principles of biostatistics, II ed. Singapore: Thomson Asia Pte. Ltd.Google Scholar
  56. Palin, O.F., P. Eggleton, Y. Malhi, A.J. Girardin, A.R. Davila, and C.L. Parr. 2011. Termite diversity along an Amazon-Andes Elevation Gradient, Peru. Biotropica 43(1): 100–107.CrossRefGoogle Scholar
  57. Pielou, E.C. 1977. Mathematical ecology. New York: Wiley.Google Scholar
  58. Potvin, C., L. Mancilla, N. Buchmann, J. Monteja, T. Moore, M. Murphy, Y. Oelmann, M. Scherer-Lorenzen, B.L. Turner, W. Wilcke, F. Zeugin, and S. Wolf. 2011. An ecosystem approach to biodiversity effects: Carbon pools in a tropical tree plantation. Forest Ecology and Management 261: 1614–1624.CrossRefGoogle Scholar
  59. Ramesh, T., K.J. Hussain, M. Selvanayagam, K.K. Satpathy, and M.V.R. Prasad. 2010. Patterns of diversity, abundance and habitat associations of butterfly communities in heterogeneous landscapes of the department of atomic energy (DAE) campus at Kalpakkam, South India. International Journal of Biodiversity and Conservation 2(4): 75–85.Google Scholar
  60. Reitsma, R., J.D. Parrish, and W. McLarney. 2001. The role of Cocoa plantations in maintaining forest avian diversity in South Eastern Costa Rica. Agroforestry Systems 53: 185–193.CrossRefGoogle Scholar
  61. Rossi, J.P. 2003. Clusters in earthworm spatial distribution. Pedobiologia 47: 490–496.Google Scholar
  62. Rossi, J.P., and P. Lavelle. 1998. Earthworm aggregation in the Savannas of Lamto (Cote d’Ivore). Applied Soil Ecology 7: 195–199.CrossRefGoogle Scholar
  63. Rossi, J.P., E. Huerta, C. Fragoso, and P. Lavelle. 2006. Soil properties inside earthworm patches and gaps in a tropical grassland (la Mancha, Veracruz, Mexico). European Journal of Soil Biology 42: S284–S288.CrossRefGoogle Scholar
  64. Santos, M.J., J.A. Greenberg, and S.L. Ustin. 2010. Using hyper spectral remote sensing to detect and quantify south-eastern pine senescence effects in red-cockaded woodpecker (Picoides borealis) habitat. Remote Sensing and Environment 114: 1242–1250.CrossRefGoogle Scholar
  65. Sarlo, M. 2006. Individual tree species effects on earthworm biomass in a tropical plantation in Panama. Caribbean Journal of Sciences 42(3): 419–427.Google Scholar
  66. Shakir, S.H., and D.L. Dindal. 1997. Density and biomass of earthworms in forest and herbaceous microecosystem in central New York, North America. Soil Biology & Biochemistry 29: 275–285.CrossRefGoogle Scholar
  67. Shannon, C.E., and W. Weaner. 1963. The mathematical theory of communication. Urbana: University of Illinois Press.Google Scholar
  68. Sileshi, G. 2007. A method for estimating insect abundance and patch occupancy with potential applications in large scale monitoring programmes. African Entomology 15(1): 89–101.CrossRefGoogle Scholar
  69. Sileshi, G. 2008. The excess-zero problem in soil animal count data and choice of appropriate models for statistical inference. Pedobiologia 52: 1–17.CrossRefGoogle Scholar
  70. Simpson, E.H. 1949. Measurement of diversity. Nature (London) 163: 688.CrossRefGoogle Scholar
  71. Smirnov, N.V. 1939a. Sur les ecarts de la courbe de distribution empirique. Recueil Mathematique N. S. 6: 3–26.Google Scholar
  72. Smirnov, N.V. 1939b. On the estimation of the discrepancy between empirical curves of distribution for two independent samples (In Russian). Bulletin Moscow University 2: 3–16.Google Scholar
  73. Spiers, G.A., D. Gagnon, G.E. Nason, E.C. Packee, and J.D. Louiser. 1986. Effects and importance of indigenous earthworms on decomposition and nutrients cycling in coastal forest ecosystems. Canadian Journal of Forest Research 16: 983–989.CrossRefGoogle Scholar
  74. Stephens, M.A. 1974. EDF statistics for goodness of fit and some comparisons. Journal of American Statistical Association 69: 730–737.CrossRefGoogle Scholar
  75. Suthar, S. 2011. Earthworm biodiversity in western arid and semiarid lands of India. The Environmentalist 31: 74–86.CrossRefGoogle Scholar
  76. Tiwari, S.C., B.K. Tiwari, and R.R. Mishra. 1992. Relationship between seasonal populations of earthworms and abiotic factors in pineapple plantations. Proceedings of National Academy of Science, India, Section B (Biological Sciences) 62(2): 223–226.Google Scholar
  77. Unterseher, M., M. Schnittler, C. Dormann, and A. Sickert. 2008. Application of species richness estimators for the assessment of fungal diversity. FEMS Microbiology Letters 282: 205–213.PubMedCrossRefGoogle Scholar
  78. Valckx, J., L. Cockx, J. Wauters, V. Meirvenne, G. Govers, M. Hermy, and B. Muys. 2009. Within-field spatial distribution of earthworm populations related to species interactions and soil apparent electrical conductivity. Applied Soil Ecology 41: 315–328.CrossRefGoogle Scholar
  79. Walkley, A., and I.A. Black. 1934. Determination of organic carbon in soil. Soil Sciences 37: 29–38.CrossRefGoogle Scholar
  80. Wardle, D.A. 2002. Communities and ecosystems: Linking the aboveground and belowground components. Princeton: Princeton University Press.Google Scholar
  81. Warton, D.I. 2005. Many zeros does not mean zero inflation: comparing the goodness-of-fit of parametric models to multivariate abundance data. Environmetrics 16(3): 275–289.CrossRefGoogle Scholar
  82. Whalen, J.K. 2004. Spatial and temporal distribution of earthworm patches in corn field, hayfield and forest systems of southwestern Québec, Canada. Applied Soil Ecology 27: 143–151.CrossRefGoogle Scholar
  83. Whalen, J.K., and C. Costa. 2003. Linking spatio-temporal dynamics of earthworm populations to nutrient cycling in temperate agricultural and forest ecosystems. Pedobiologia 47: 801–806.Google Scholar
  84. Wood, T.G. 1974. The distribution of earthworms (Megascolecidae) in relation to soils, vegetation and altitude on the slopes of Mt. Kosciusko, Australia. Journal of Animal Ecology 43: 87–106.CrossRefGoogle Scholar
  85. Zar, J.H. 1999. Biostatistical Analysis, IV ed. New Delhi: Pearson Education Singapore Pte. Ltd. (Indian Branch).Google Scholar

Copyright information

© Zoological Society, Kolkata, India 2012

Authors and Affiliations

  1. 1.Department of ZoologyTripura University (A Central University)SuryamaninagarIndia
  2. 2.College TillaAgartalaIndia

Personalised recommendations