Proceedings of the Zoological Society

, Volume 63, Issue 1, pp 13–20 | Cite as

Antibiotic resistant bacteria in consumable fishes from Digha coast, West Bengal, India

  • Koushik GhoshEmail author
  • Sudipta Mandal
Research Article


Antibiotic resistant bacteria from the commercial marine catch of the pelagic fishes in the Bay of Bengal at Digha coast (21°37′N, 87°33′E), West Bengal, India were evaluated. Aerobic heterotrophic and gram negative, along with the enteric bacteria were enumerated from gill and intestinal homogenates. Media supplemented with the antibiotics were used to evaluate the antibiotic resistant bacterial load. Viable counts (CFU g−1) of heterotrophic and resistant bacteria from gills were higher than those from the intestinal content. Significant variations were also noted among the percentages of bacteria (CFU) resistant to different antibiotics. High incidences of resistance to ampicillin, as well as, most sensitivity to chloramphenicol were noticed for the isolated bacterial strains. Results of the present study suggests that commercial marine fish catch at Digha coast might play a role as carrier / reservoir of antibiotic resistant bacteria creating a health risk for the fish consumers.


Marine fish gill intestine antibiotic resistant bacteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, T. J., Palaniappan, R., Dhevendaran, K. 1997. Impact of antibiotics used in shrimp farms on the coastal environment. In: Proceedings of Sixth National Symposia on Environment. (Ramasamy, K., Gunathilagaraj, K., Selvasekarapandian, S., Sadasivan S. Eds.). TNAU, Coimbatore. pp. 183–185.Google Scholar
  2. Abraham, T. J., Barman, A., Sasmal, D., Nagesh, T. S. 2004. A survey on the use of chemicals and biological products in shrimp farms of West Bengal, India. In: All India seminar on Sustainable Aquaculture for Augmentation of Export with Special Reference to Environment, Engineering and value Addition. The Institute of Engineers (India), Kolkata. Abstract No. A33.Google Scholar
  3. Agerso, Y., Guardabassi, L. 2005. Identification of Tet 39, a novel class of tetracycline resistance determinant in Acinetobacter spp. of environmental and clinical origin. J Antimicrob. Chemother., 55: 566–569.CrossRefPubMedGoogle Scholar
  4. Alves de Lima e Silva, A., Hofer, E. 1993. Resistance to antibiotics and heavy metals in Escherichia coli from marine fish. Environ. Toxicol. Water Qual., 8: 1–11.CrossRefGoogle Scholar
  5. Anderson, A. D., Nelson, J. M., Rossiter, S., Angulo, F. J. 2003. Public health consequences of use of antimicrobial agents in food animals in the United States. Microb. Drug Resist., 9: 373–379.CrossRefPubMedGoogle Scholar
  6. Angulo, F. J., Griffin, P. M. 2000. Changes in antimicrobial resistance in Salmonella enterica serovar Typhimurium. Emerg. Infect. Dis., 6: 436–438.CrossRefPubMedGoogle Scholar
  7. Angulo, F. J., Nargund, V. N., Chiller, T. C. 2004. Evidence of an association between use of anti-microbial agents in food animals and anti-microbial resistance among bacteria isolated from humans and the human health consequences of such resistance. J. Vet. Med., 51: 374–379.CrossRefGoogle Scholar
  8. Aoki, T., Equasa, S. 1971. Drug sensitivity of Aeromonas liquifaciens isolated from freshwater fishes. Bull. Jpn. Soc. Sci. Fish., 37: 19–28.Google Scholar
  9. Aoki, T., Kitao, T., Arai, T. 1977. R plasmids in fish pathogens. In: Plasmids — Medical and Theoretical Aspects. (Mitsuhashi, S., Rosival, L., Krcmery, V. Eds.) Avicenum-Czechoslovak Medical Press: Berlin. pp. 39–45.Google Scholar
  10. Austin, B. 1985. Antibiotic pollution from fish farms: Effects on aquatic microflora. Microbiol. Sci., 2: 113–117.PubMedGoogle Scholar
  11. Bauer, A. W., Kirby, W. M. M., Sherris, J. C., Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 45: 493–496.PubMedGoogle Scholar
  12. Boxall, A. B., Fogg, L. A., Blackwell, P. A., Kay, P., Pemberton, E. J., Croxford, A. 2004. Veterinary medicines in the environment. Rev. Environ. Contam. Toxicol., 180: 1–91.CrossRefPubMedGoogle Scholar
  13. Burrus, V., Waldor, M. K. 2003. Control of SXT integration and excision. J. Bacteriol., 185: 5045–5054.CrossRefPubMedGoogle Scholar
  14. Bushman, F. 2002a. Conjugation, transposition, and antibiotic resistance. In: Lateral DNA Transfer: Mechanisms and Consequences. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA. pp. 27–72.Google Scholar
  15. Bushman, F. 2002b. Phage transduction and bacterial pathogenesis. In: Lateral DNA Transfer: Mechanisms and Consequences. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA. pp. 73–128.Google Scholar
  16. Cabello, F. C. 2003. Antibiotics and aquaculture. An analysis of their potential impact upon the environment, human and animal health in Chile. Fundacion Terram. Analisis de Politicas. Publicas No. 17, pp. 1–16.Google Scholar
  17. Casas, C., Anderson, E. C., Ojo, K. K., Keith, I., Whelan, D., Rainnie, D., Roberts, M. C. 2005. Characterization of pRAS1-like plasmids from atypical North American psychrophilic Aeromonas salmonicida. FEMS Microbiol. Lett., 242: 59–63.CrossRefPubMedGoogle Scholar
  18. Cohen, M. L. 1992. Epidemiology of Drug resistance: Implications for a post-antibiotic. Era. Science., 257: 1050–1063.Google Scholar
  19. Fuhrman, J. A. 1999. Marine viruses and their biogeochemical and ecological effects. Nature, 399: 541–548.CrossRefPubMedGoogle Scholar
  20. Gerba, C. P., McLeod, J. S. 1976. Effect of sediments on the survival of Escherichia coli in marine waters. Appl. Environ. Microbiol., 32: 114–120.PubMedGoogle Scholar
  21. Goyal, S. M., Gerba, C. P., Melnick, J. L. 1979. R+ bacteria in estuarine sediments. Mar. Pollut. Bull., 10: 25–27.CrossRefGoogle Scholar
  22. Grimes, D. J., Singelton, F. L., Colwell, R. R. 1984. Allogenic succession of marine bacterial communities in response to pharmaceutical waste. J. Appl. Bacteriol., 57: 247–261.PubMedGoogle Scholar
  23. Guardabassi, L., Dalsgaard, A., Raffatellu, M., Olsen, J. E. 2000. Increase in the prevalence of oxolinic acid resistant Acinetobacter spp. observed in a stream receiving the effluent from a freshwater trout farm following the treatment with oxolinic acid-medicated feed. Aquaculture, 188: 205–218.CrossRefGoogle Scholar
  24. Hastings, P. J., Rosenberg, S. M., Slack, A. 2004. Antibioticinduced lateral transfer of antibiotic resistance. Trends Microbiol., 12: 401–404.CrossRefPubMedGoogle Scholar
  25. Hektoen, H., Berge, J. A., Hormazabal, V., Yndestad, M. 1995. Persistence of antibacterial agents in marine sediments. Aquaculture, 133: 175–184.CrossRefGoogle Scholar
  26. Holten Lützhoft, H. C., Halling-Sørensen, B., Jørgensen, S. E. 1999. Algal toxicity of antibacterial agents applied in Danish fish farming. Arch. Environ. Contam. Toxicol., 36: 1–6.CrossRefGoogle Scholar
  27. Kaspar, C. W., Burgess, J. L., Knight, Y. T., Colwell, R. R. 1990. Antibiotic resistance indexing of Escherichia coli to identify sources of fecal contamination in water. Can. J. Microbiol., 36: 891–894.CrossRefPubMedGoogle Scholar
  28. Kerry, J., Coyne, R., Gilroy, D., Hiney, M., Smith, P. 1996. Spatial distribution of oxytetracycline and elevated frequencies of oxytetracycline resistance in sediments beneath a marine salmon farm following oxytetracycline therapy. Aquaculture, 145: 31–39.CrossRefGoogle Scholar
  29. Kinnear P. R., Gray C. D. 2000. SPSS for Windows Made Simple. Release 10. Psychology Press: Sussex, UK.Google Scholar
  30. Kruse, H., Sørum, H. 1994. Transfer of multiple drug resistance plasmids between bacteria of diverse origins in natural microenvironments. Appl. Environ. Microbiol., 60: 4015–4021.PubMedGoogle Scholar
  31. L’Abee-Lund, T. M., Sørum, H. 2001. Class 1 integrons mediate antibiotic resistance in the fish pathogen Aeromonas salmonicida worldwide. Microb. Drug Resist., 7: 263–272.CrossRefPubMedGoogle Scholar
  32. Levy, S. B. 1988. Tetracycline resistance determinants are widespread. ASM News, 54: 418–421.Google Scholar
  33. Levy, S. B., FitzGerald, G. B., Macone A. B. 1976. Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man. Nature, 260: 40–42.CrossRefPubMedGoogle Scholar
  34. Markestad, A., Grave, K. 1997. Reduction of antibacterial drug use in Norwegian fish farming due to vaccination. Fish Vaccinol., 90: 365–369.Google Scholar
  35. Matyar, F., Dincer, S., Kaya, A., Colak, O. 2004. Prevalence and resistance to antibiotics in Gram negative bacteria isolated from retail fish in Turkey. Ann. Microbiol., 54: 151–160.Google Scholar
  36. Mc Arthur, J. V., Tuckfield, R. C. 2000. Spatial patterns and antibiotic resistance among stream bacteria: effects of Industrial pollution. Appl. Environ. Microbiol., 66: 3722–3726.CrossRefGoogle Scholar
  37. McPhearson, R. M., DePoala, A., Zywno, S. R., Motes Jr., M. L., Guarino, A. M. 1991. Antibiotic resistance in Gramnegative bacteria from cultured catfish and aquaculture ponds. Aquaculture, 99: 203–211.CrossRefGoogle Scholar
  38. Miranda, C. D., Zemelman, R. 2001. Antibiotic resistant bacteria in fish from the Concepcion Bay Chile. Mar. Pollut. Bull., 11: 1096–1102.CrossRefGoogle Scholar
  39. Miranda, C. D., Castillo, G. 1998. Resistance to antibiotics and heavy metals of motile aeromonads from Chilean fresh water. Sci. Total Environ., 224: 167–176.CrossRefPubMedGoogle Scholar
  40. Miranda, C. D., Zemelman, R. 2002a. Bacterial resistance to oxytetracycline in Chilean salmon farming. Aquaculture, 212: 31–47.CrossRefGoogle Scholar
  41. Miranda, C. D., Zemelman, R. 2002b. Antimicrobial multiresistance in bacteria isolated from freshwater Chilean salmon farms. Sci. Total Environ., 293: 207–218.CrossRefGoogle Scholar
  42. Nandi, S., Maurer, J. J., Hofacre, C., Summers, A. O. 2004. Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci., 101: 7118–7122.CrossRefPubMedGoogle Scholar
  43. Neu, H. C. 1992. The crisis in antibiotic resistance. Science, 257: 1064–1073.CrossRefPubMedGoogle Scholar
  44. Ogbondeminu, F. S., Olayemi, A. B. 1993. Antibiotic resistance in enteric bacterial isolates from fish and water media. J. Aqua. Trop., 8: 207–212.Google Scholar
  45. Peele, E. R., Singleton, F. L., Deming, J. W., Cavari, B., Colwell, R. R. 1981. Effects of pharmaceutical wastes on microbial populations in surface water at the Puetro Rico dump site in the Atlantic Ocean. Appl. Environ. Microbiol., 41: 873–879.PubMedGoogle Scholar
  46. Richmond, M. H. 1972. Some environmental consequences of the use of antibiotics: ‘Or whats up must come down’. J. Appl. Bacteriol., 35: 155–176.PubMedGoogle Scholar
  47. Smith, P., Hiney, M. P., Samuelsen, O. B. 1994. Bacterial resistance to antimicrobial agents used in fish farming: A critical evaluation of method and meaning. Annu. Rev. Fish Dis., 4: 273–313.CrossRefGoogle Scholar
  48. Sørum, H. 2006. Antimicrobial Resistance in Bacteria of Animal Origin. In: Antimicrobial drug resistance in fish pathogens. Chapter 13 (Aarestrup, F.M. Ed.). American Society for Microbiology Press: Washington, DC, USA. pp. 213–238.Google Scholar
  49. Tendencia, E. A., de la Pena, L. D. 2001. Antibiotic resistance of bacteria from shrimp ponds. Aquaculture, 195: 193–204.CrossRefGoogle Scholar
  50. Waltman, W. D., Shotts, E. B. 1986. Antimicrobial susceptibility of Edwardsiella tarda from the United States and Taiwan. Vet. Microbiol., 12: 277–282.CrossRefPubMedGoogle Scholar
  51. Witte, W., 2000. Selective pressure by antibiotic use in livestock. Int. J. Antimicrob. Agents., 16:19–24.CrossRefGoogle Scholar
  52. Young, H. K. 1993. Antimicrobial resistance spread in aquatic environments. J. Antimicrob. Chemother., 31: 627–635.CrossRefPubMedGoogle Scholar
  53. Zar, J. H. 1999. Biostatistical Analysis. 4th Edn. Pearson Education Singapore Pte. Ltd (Indian Branch): New Delhi, India. pp.663.Google Scholar

Copyright information

© Zoological Society, Kolkata 2010

Authors and Affiliations

  1. 1.Aquaculture Laboratory, Department of ZoologyThe University of BurdwanGolapbag, BurdwanIndia

Personalised recommendations