Proceedings of the Zoological Society

, Volume 62, Issue 2, pp 131–137 | Cite as

Analysis of major lipid classes and their fatty acids in a cestode parasite of domestic fowl, raillietina (Fuhrmannetta) echinobothrida

  • Madhumita Mondal
  • Debalina Mukhopadhyay
  • Debasree Ghosh
  • C. Dey
  • K. K. Misra
Research Article


Adult tape worms take up small molecules through their tegument and are therefore largely dependent on their host’s ability to break down carbohydrates, fats, and proteins. Cestodes have lost their capacity for de novo synthesis of lipids and have become entirely dependent on their host. It is reported that the cestodes are able to absorb both short and long chain fatty acids through a mixture of diffusion and mediated transport. Cestodes do not use lipids normally as energy reserve; instead these are being utilized for reproduction. In an attempt to know the lipid composition of the fowl cestode, Raillietina (Fuhrmannetta) echinobothrida, major lipid classes and their fatty acid compositions of this parasite were analyzed by TLC and GLC respectively. Fatty acid methyl esters of total lipid, neutral lipid, phospholipid, and glycolipid were prepared by transmethylation. Eighteen fatty acids were identified from the parasite. The percent content of neutral lipid (64.39), glycolipid (15.7) and phospholipid (19.91) were recorded. Palmitic (C16) and C18 (stearic) acids were the chief components among the fatty acids.


Total lipid neutral lipid glycolipid phospholipid GLC TLC tapeworm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Ackman, R. G. 2000. Fatty acids in fish and shellfish. In: Fatty acids in Foods and their Health Implications. Chow, C. K. (ed.) M. Dekker, New York. pp 153–172.Google Scholar
  2. Aisien, S. O., Ogiji, E. E. 1989. Observations on the lipids of Oochoristica agamae (Cestoda). Parasitol. Res., 75: 307–310.CrossRefPubMedGoogle Scholar
  3. Barrett, J. 1981. Biochemistry of Parasitic Helminthes. Univ. Park Press, Baltimore.Google Scholar
  4. Barrett, J. 1983. Lipid metabolism. In: Biology of the Eucestoda, Arme, C., Pappas, P. W. (eds.) vol. 2, pp.391–419. Academic Pr., London.Google Scholar
  5. Berg, J. M., Tymoczko, J. L., Stryer, L., Clarke, N. D. 2002. Biochemistry. 5th Edition. Freeman and Company, New York.Google Scholar
  6. Bligh, E. G., Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911–917PubMedGoogle Scholar
  7. Buteau, G. H., Simons, J. E., Beach, D. H., Holz, Jr. G. G., Sherman, I. W. 1971. The lipids of cestodes from Pacific and Atlantic Coast Triakid sharks. J. Parasit., 57: 1272–1278.CrossRefPubMedGoogle Scholar
  8. Chappell, L. H. 1980. Physiology of Parasites. Blackie, Glasgow.Google Scholar
  9. Christie, W. W. 2003. Lipid Analysis. 3rd Edition. Oily Press, Bridgwater.Google Scholar
  10. Dalton, J.P., Skelly, P., Halton, D.W. 2004. Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Can. J. Zool., 82: 211–232.CrossRefGoogle Scholar
  11. Dey, C., Misra, K. K. 2009. Ultrastructural studies of internuncial processes in the tegument of a cyclophyllid cestode Raillietina (Fuhrmannetta) echinobothrida, a parasite of country fowl Gallus domesticus. Proc. zool. Soc., 62: 29–37.CrossRefGoogle Scholar
  12. Fried, B., Butler, M.S. 1977. Histochemical and thin layer chromatographic analysis of neutral lipids in metacercarial and adult Cotylurus sp. (Trematoda:Strigeidae). J. Parasit., 63:831–834.CrossRefPubMedGoogle Scholar
  13. Furlong, S. T., Thibault, K. S., Morbelli, L. M., Quinn, J. J., Rogers, R. A. 1995. Uptake and compartmentalization of fluorescent lipid analogs in larval Schistosoma mansoni. J. Lipid Res., 36: 1–12.PubMedGoogle Scholar
  14. Ghosh, D. 2009. Competition for lipid and fatty acid uptake by a trematode parasite Paramphistomum cervi and its host, the Indian goat Capra hircus. Ph. D. Thesis, University of Calcutta, Calcutta.Google Scholar
  15. Ghosh, A., Kar, K., Ghosh, D., Dey, C., Misra, K. K. 2009. Major lipid classes and their fatty acids in a parasitic nematode, Ascaridia galli. J. Parasit. Dis., (Submitted for publication).Google Scholar
  16. Jacobsen, N. S., Fairbairn, D. 1967. Lipid metabolism in helminth parasites. III. Biosynthesis and interconversion of fatty acids by Hymenolepis diminuta (Cestoda). J. Parasit., 53: 355–361.CrossRefPubMedGoogle Scholar
  17. Meyer, F., Kimura, S., Mueller, J. F. 1966. Lipid metabolism in the larval and adult forms of the tapeworm Spirometra mansonoides. J. Biol. Chem., 241: 4224–4232.PubMedGoogle Scholar
  18. Mills, G. L., Taylor, D. C., Williams, J. F. 1981. Lipid composition of metacestodes of Taenia taeniaeformis and lipid changes during growth. Mol. Biochem. Parasitol., 3: 301–318.CrossRefPubMedGoogle Scholar
  19. Moczoñ, T. 2006. Accumulation and utilization of lipids during the development of Hymenolepis diminuta cysticercoids. Acta Parasitol., 51: 152–155.CrossRefGoogle Scholar
  20. Rouser, G., Kritchevsky, G., Yamamoto, A. 1976. Column Chromatographic and Associated Procedures for Separation and Determination of Phosphatides and Glycolipids. In: Lipid Chromatographic Analysis. Marinetti, G. V. (Ed.) 2nd Edition. Volume 3. M Dekker, New York. pp 713–776.Google Scholar
  21. Sato, S., Hirayama, T., Hirazawa, N. 2008. Lipid content and fatty acid composition of the monogenean Neobenedenia girellae and comparison between the parasite and host fish species. Parasitology, 135: 967–975.CrossRefPubMedGoogle Scholar
  22. Smyth, J.D. 1994. Animal Parasitology, Cambridge Univ. Pr., Cambridge.Google Scholar
  23. Smyth, J. D., McManus, D. P. 1989. The Physiology and Biochemistry of Cestodes. 2nd. Ed. Cambridge Univ. Pr., Cambridge.Google Scholar
  24. Tielens, A.G. M. 1997. Biochemistry of Trematodes. In: Advances in Trematode Biology, (Fried, B., Graczyk, T.K. Eds.), pp. 309–343. CRC Press, Boca Raton, Florida.Google Scholar
  25. Vykhrestyuk, N.P., Yarygina, G. V., Il’iasov, I. N. 1981. Lipids of Raillietina tetragona and Raillietina echinobothrida cestodes from the intestine of hens. Parazitologiia, 15: 525–532. (in Russian)Google Scholar
  26. Ward, C. W., Fairbairn, D. 1070. Enzymes of beta-oxidation and the tricarboxylic acid cycle in adult Hymenlepis diminuta (Cestode) and Ascaris lumbricoides (Nematoda). J. Parasit., 56: 1009–1012.CrossRefGoogle Scholar
  27. White, A., Handler, P., Smith, E. L. 1964. Principles of Biochemistry. McGraw-Hill, New York.Google Scholar

Copyright information

© Zoological Society, Kolkata 2009

Authors and Affiliations

  • Madhumita Mondal
    • 1
  • Debalina Mukhopadhyay
    • 1
  • Debasree Ghosh
    • 1
  • C. Dey
    • 2
  • K. K. Misra
    • 1
  1. 1.Department of ZoologyR. B. C. CollegeNaihatiIndia
  2. 2.Serampur CollegeSerampur, HooghlyIndia

Personalised recommendations