Journal of the Geological Society of India

, Volume 95, Issue 1, pp 59–66 | Cite as

Pedogenesis and Mineralogy of Alluvial Soils from Semi-arid Southeastern Part of Rajasthan in Aravalli Range, India

  • R. P. SharmaEmail author
  • P. Raja
  • B. P. Bhaskar
Research Articles


Three representative alluvial soils were studied from Kothari river basin of Bhilwara district in southeast Rajasthan to assess degree of chemical weathering and pedogenesis. Morphological, geochemical, mineralogical and other analytical investigations were carried out. Soils were classified as Entisols and Inceptisols. These soils are mostly sandy with more than 50% of fine and medium sand fractions, silt to clay ratio more than 0.45 and little textural variation suggesting more uniform weathering. These soils are slight to strongly alkaline with high exchangeable sodium (>15%) and cation exchange capacity less than 10 cmol(+)kg−1. Mineralogical investigations showed the dominance of micas and smectites in Pedon 1 (P1) and Pedon 2 (P2) and increase of smectites and micas in Bw3 horizon of P3 under strong alkalinity and high silica activity with limited lessivage. The low chemical index of alteration (CIA) in soils further indicated an incipient pedogenesis with a relative proportion of mica-smectite composition. The A-CNK-FM diagram shows abundance of CaO + Na2O + K2O as against Fe2O3+ MgO components under limited leaching environment and chemical weathering. The results of bivariate plot of SiO2 to (Al2O3 + K2O + Na2O) indicated the past weathering which influenced by prevailing arid climate in the region.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdou, A.A. and Shehata, M.G. (2007) Geochemical study of the shales of Gebel Ghorabi Member, Bahariya Oasis, western Desert, Egypt. Australian Jour. Basic Appld. Sci., v.1, pp.553–560.Google Scholar
  2. Adams, J.S., Kraus, M.J. and Wing, S.L. (2011). Evaluating the use of weathering indices for determining mean annual precipitation in the ancient stratigraphic record. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.309, pp.358–366.CrossRefGoogle Scholar
  3. Aoudjit, M., Robert, M., Elsass, F. and Curmi, P. (1995) Detailed study of smectite genesis in granitic saprolites by analytical electron microscopy. Clay Minerals, v.30, pp.135–147.CrossRefGoogle Scholar
  4. Bakliwal, P.C. and Wadhawan, S.K. (2003) Geological evolution of Thar Desert in India-issues and prospects. Proc. Ind. Nat. Academy, Part A, v.69(2), pp.151–166.Google Scholar
  5. Bhaskar, B.P., Baruah, U., Vadivelu, S. and Butte, P.S. (2005) Characterization of soils in Bil environs of Brahmaputra valley in Jorhat district, Assam for land use Interpretations. Jour. Indian Soc. Soil Sci., v.52(3), pp.3–10.Google Scholar
  6. Bhaskar, B.P., Reddy, R.S., Budhihal, S.L., Challa, O., Anantwar, S.G., Nasare, R.A., Arti koyal, Gajbhiye, K.S. and Velatutham, M. (2000) Evaluation of sediment stratification and classification of alkali soils in Chitravati river basin, Andhra Pradesh. Agropedology, v.10, pp. 195–204.Google Scholar
  7. Birkeland, P.W., Shroba, R.R., Burns, S.F., Price, A.B. and Tonkin, P.J. (2003) Integrating soils and geomorphology in mountains-an example from the Front Range of Colorado. Geomorphology, v.55, pp.329–344.CrossRefGoogle Scholar
  8. Boettinger, J.L. and Southard, R.J. (1995) Phyllosilicate distribution and origin in Aridisols on a granitic pediment, Western Mojave Desert. Soil Sci. Soc. Amer. Jour., v.59, pp.1189–1198.CrossRefGoogle Scholar
  9. Borchardt, G. (1989) Smectites. In: Minerals in Soil Environments (J.B. Dixon & S.B. Weed, editors). Soil Sci. Soc. America, Madison, Wisconsin, pp. 675–727.Google Scholar
  10. Brite, J. and Armin, S. (2007) Genesis, properties, classification and assessment of soils in Central Benin, West Africa. Geoderma, v.139, pp.357–370.CrossRefGoogle Scholar
  11. Cai, G., Guo, F., Liu, X., Sui, S., Li, C. and Zhao, L. (2008) Geochemistry of Neogene sedimentary rocks from the Jiyang basin, North China Block: The roles of grain size and clay minerals. Geochemical Jour., v.42, pp.381–402.CrossRefGoogle Scholar
  12. Castro, H.Y. and Gomez, M. (2013) Fertilidad de suelos y Fertilizantes. En el libro Ciencia del Suelo Principios básicos. Sociedad Colombiana de la Ciencia del Suelo, Bogotá, Colombia. 236p.Google Scholar
  13. Chandra, R., Ahmad, I. and Qurashi, A.U. (2016) Pedological and Geochemical Characterization of Loess-Paleosol Sediments of Karewa Basin: Implications for Paleoclimatic Reconstruction of Kashmir Valley. Jour Geol.Soc. India, v.4, pp.38–54.Google Scholar
  14. Choudhari, J.S. and Dhir, R.P. (1981) Clay mineralogy of medium-fine textured alluvial soils Western Rajasthan. Proc. Indian Nat. Sci. Acad. v.47–A(6), pp.695–704.Google Scholar
  15. Daddow, R.L., and Warrington, G.E. (1983) Growth-limiting soil bulk densities as influenced by soil texture. USDA For. Serv. Watershed Syst. Dev. Group Rep. WSDG-TN-00005.Google Scholar
  16. Dellavalle, N.B. (1992) Determination of soil-paste pH and conductivity of saturation extract. In Handbook on Reference Methods for Soil Analysis. Soil and Plant Analysis Council, Inc. Athens, GA, pp.40–43.Google Scholar
  17. Emadi, M., Baghernejad, M. and Memarian, H. (2008) Genesis and clay mineralogical investigations in highly calcareous soils in semiarid regions of Southern Iran. Jour. Appld. Sci., v.8(2), pp.288–294.CrossRefGoogle Scholar
  18. Fanning, D.S., Keramidas, V.Z. and EL-Desoky, M.A. (1989) Micas. In: J.B. Dixon and S.B. Weed (Eds.), Minerals in Soil Environments. Soil Sci. Soc. Amer., Madison, Wisconsin, USA, pp.551–634.Google Scholar
  19. Ghose, B., Singh, S. and Kar, A. (1977) Desertification around the Thar-A geomorphological interpretation. Annals of Arid Zone, v.16(3), pp.290–301.Google Scholar
  20. Ghosh, S.K. and Dutta, N.P. (1974) X-ray investigation of clay minerals in the soils of West Bengal. Proc. Indian Natl. Sci. Acad., v.40, p.138.Google Scholar
  21. Jackson, M.L. (1973) Soil Chemical Analysis. Prentice Hall of India Private Ltd. New-Delhi.Google Scholar
  22. Jackson, M.L. (1979) Soil Chemical Analysis. An Advance Course. 2nd Edition. Univ. Wisconsin Madison, USA.Google Scholar
  23. Jingqing, Shao, Shouye, Yang and Chao, Li. (2012) Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments. Sediment. Geol., v.265–266, pp.110–120.Google Scholar
  24. Kabata-Pendias, A. and Pendias, H. (1992) Trace Elements in Soils and Plants, 2nd Edition, CRC Press, Boca Ratón, Florida, 315.pp.Google Scholar
  25. Kanhaiya, S., Singh, B.P. and Singh, S. (2018) Mineralogical and Geochemical Behavior of Sediments Solely Derived from Bundelkhand Granitic Complex, Central India: Implications to Provenance and Source Rock Weathering. Geochemistry Internat., v.56,(12), pp.1245–1262.CrossRefGoogle Scholar
  26. Kar, A. (1995) Geomorphology of arid western India, Mem. Geol. Soc. India, v.32, pp.168–190.Google Scholar
  27. Kar, A., Singhvi, A. K., Juyal, N. and Rajaguru, S.N. (2004) Late Quaternary aeolian sedimentation history of Thar Desert. In Sharma, H. S. Singh, S. and De, S. (eds.), Geomorphology and Environment. ACB Publications, Kolkata. Pp.105–122.Google Scholar
  28. Khormali, F. and Abtahi, A. (2003) Origin and distribution of clay minerals in calcareous arid and semi-arid soils of Fars Province, southern Iran. Clay Minerals, v.38, pp.511–527.CrossRefGoogle Scholar
  29. Khresat, S.A. and Qudah, E.A. (2006) Formation and properties of aridic soils of Azraq Basin in northeastern Jordan. Jour. Arid Environ., v.64(1), pp.116–136.CrossRefGoogle Scholar
  30. Langley-Turnbaugh, S. J., Wilkinson, D. and Rocque, D. (2005) Portland underground: Exploring urban soils in Maine. Soil Survey Horizons, v.46, pp.1–13.CrossRefGoogle Scholar
  31. McFadden, L.D., Wells, S.G. and Dohrenwend, J.C. (1986) Influences of Quaternary climatic changes on processes of soil development on desert loess deposits of the Cima volcanic field, California. Catena, v.13, pp.361–389, DOI: Scholar
  32. McLennan, S. M. (2001) Relationships between the traces element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, 2000GC000109.CrossRefGoogle Scholar
  33. Mehra, O.P. and Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. v.7, pp.317–327.CrossRefGoogle Scholar
  34. Meyer, W.L. and Arp, P.A. (1994) Exchangeable cations and cation exchange capacity of forest soil samples. Effects of drying, storage and horizon. Can. Jour. Soil Sci., v.74: pp.421–429.CrossRefGoogle Scholar
  35. Moharana, P.C. and Raja, P. (2016) Distribution, Forms and Spatial Variability of Desert Pavements in Arid Western Rajasthan. Jour. Geol. Soc. India, v.87, pp.401–410.CrossRefGoogle Scholar
  36. Moore, G. (2001) Soil Guide-A Handbook for understanding and Managing Agricultural Soils. Bulletin — 4343. Agriculture Western Australia pp. 243–250.Google Scholar
  37. Muhs, D. R., Bettis, E. A., Been, J. and McGeehin, J.P. (2001) Impact of climate and parent material on chemical weathering in loess-derived soils of the Mississippi river valley. Soil Sci. Soc. Amer. Jour., v.65, pp.1761–1777.CrossRefGoogle Scholar
  38. Nesbitt, H.W. and Young, G.M. (1982) Early Proterozoic climates and plate motion inferred from major element chemistry of Luttites. Nature, v.299, pp.715–717.CrossRefGoogle Scholar
  39. Nesbitt, H.W. and Young, G.M. (1989) Formation and diagenesis of weathering profiles. Jour. Geol., v.97(2), pp.129–147.CrossRefGoogle Scholar
  40. Nwokocha, C.C., Akamigbo, F.O.R. and Chukwu, G.O. (2003) Characterization and evaluation of soils of Umuahia North local government area of Abia State, for agricultural production. In Ojeniyi et al., (Eds.), Land degradation, Agricultural Productivity and Rural Poverty: Environmental implications. Proceedings of the 28th Annual conference of the SSSN 4–7 November, 2003 Umudike-Nigeria, pp. 308–315.Google Scholar
  41. Pal, D.K. and Deshpande, S.B. (1987) Parent material, mineralogy and genesis of two benchmark soils of Kashmir valley. Jour. Indian Soc. Soil Sci., v.35, pp.690–698.Google Scholar
  42. Parker, A. (1970) An index of weathering for silicate rocks. Geological Magazine, v.107, pp.501–504.CrossRefGoogle Scholar
  43. Price, J.R. and Velbel, M.A. (2003) Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, v.202(3), pp.397–416.CrossRefGoogle Scholar
  44. Raad, A.T. and Portz, R. (1971) A new method for identification of sediment stratification in soils of Blue springs basin, Ontario. Geoderma, v.6, pp.23–41.CrossRefGoogle Scholar
  45. Raj Kumar, Sharma, B.D., Sidhu, P.S. and Brar, J.S. (2005) Characteristics, classification and management of Arid soils of Punjab. Jour. Indian Soc Soil Sci., v.53, pp.21–28.Google Scholar
  46. Raja, P., Bhaskar, B.P., Surendran, U., Rajan, K., Sarkar, S.K., Malpe, D.B. and Nagaraju, M.S.S. (2018) Pedogenesis of spatially associated red and black soils in Purna valley from semi-arid region of Central India. Chemical Geol., v.483, pp.174–190; Scholar
  47. Rowell, D.L. (1994) Soil Science. Methods and Applications. Longman scientific & Technical, UK.Google Scholar
  48. SCCS (2013) Estándares generales para interpretar análisis de suelos con fines agrícolas. F. Silva M. Editor, Santafé de Bogota, D. E. 257 p.Google Scholar
  49. Schoeneberger, P.J., Wysocki, D.A. and Benham, E.C. (2012) Soil Survey Staff, 2012. Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.Google Scholar
  50. Sharma, A., Sensarma, S., Kamlesh Kumar, Khanna, P.P. and Saini, N.K. (2013) Mineralogy and geochemistry of the Mahi River sediments in tectonically active western India: Implications for Deccan large igneous province source, weathering and mobility of elements in a semi-arid climate, Geochim. Cosmochim. Acta, v.104, pp.63–83. DOI: Scholar
  51. Sharma, R.P., Rathore, M.S., Singh, R.S. and Qureshi, F.M. (2010) Mineralogical Framework of Alluvial Soils Developed on the Aravalli Sediments. Jour. Indian Soc. Soil Sci., v.58, pp.70–75.Google Scholar
  52. Sharma, R.P., Singh, R.S. and Sharma, S.S. (2013) Vertical Distribution of Plant Nutrients in Alluvial Soils of Aravalli Range and Optimization of Land Use. International Jour. Pharmaceutical Chem. Sci., v.2(3), pp.1377–1389.Google Scholar
  53. Sidhu, G.S., Ghosh, S.K. and Manjaiah, K.M. (2000) Pedological variabilities and classification of some dominant soils of Aravallies Yamuna river transect in semi-arid tract of Haryana. Agropedology, v.10, pp.80–87.Google Scholar
  54. Singh, B. (2016) Variability and trend analysis of rainfall data of Jhalawar district of Rajasthan, India. Jour. Appld. Natural Sci., v.8(1), pp.116–12.CrossRefGoogle Scholar
  55. Soil Survey Staff (2014) Keys to Soil Taxonomy. 12th Edition, USDA-Natural Resources Conservation Service, Washington DC.Google Scholar
  56. Sombroek, W.G. and Zonneveld, I.S. (1971) Ancient dune fields and fluviatile deposits in the Rima-Sokoto River Basin (NW Nigeria). Soil Survey Paper no.5, Netherlands Soil Survey Institute, Wageningen. 109pp.Google Scholar
  57. Suttner, L.J. and Dutta, P.K. (1986) Alluvial Sandstone Composition and Palaeoclimate Framework Mineralogy. Jour. Sediment. Petrol., v.56, pp.329–345.Google Scholar
  58. Thornthwaite, C.W. (1948) An approach toward a rational classification of climate. Geographical Rev., v.38, pp.55–94.CrossRefGoogle Scholar
  59. Veihmeyer, F.J. and Hendrickson, A.H. (1948) Soil density and root penetration. Soil Sci., v.65(6), pp.487–494.CrossRefGoogle Scholar
  60. Verma, M., Singh, B.P., Srivastava, A. and Mishra, M. (2012) Chemical behaviour of suspended sediments in a small river draining out of the Himalaya, Tawi River, northern India: implications on provenance and weathering, Himalayan Geol., v.33(1), pp.1–14.Google Scholar
  61. Wilson, M.J. (1999) The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, v.34, pp.735.CrossRefGoogle Scholar
  62. Yang, S.Y., Li, C.X., Yang, D.Y. and Li, X.S. (2004) Chemical weathering of the loess deposits in the lower Changjiang Valley, China, and paleoclimatic implications. Quaternary Internat., v.117, pp.27–34.CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  1. 1.ICAR-National Bureau of Soil Survey and Land Use PlanningNagpurIndia
  2. 2.Research CentreIndian Institute of Soil and Water ConservationUdhagamandalamIndia
  3. 3.Regional Centre, HebbalICAR-NBSS&LUPBangaloreIndia

Personalised recommendations