Skip to main content
Log in

Generating Substantially Complete Landslide Inventory using Multiple Data Sources: A Case Study in Northwest Himalayas, India

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Landslide inventory contains basic information about landslides such as location, classification, morphometry, volume, run-out distance, activity, date of occurrence, damages caused etc. In most landslide inventory maps only spatio-temporal distribution of slope failures is shown. A complete portrayal of landslide inventory, both in number of landslides mapped and associated attributes such as morphometry, classification etc. is a must as it has bearing on the estimation of landslide susceptibility, hazard and risk. Despite of its enormous importance, landslide inventory is rarely found to be complete. This can be attributed to limited availability of requisite data and the inherent uncertainties in landslide inventory mapping from different sources and importantly the insufficient field inputs. In the present work in the Mandakini valley of Uttarakhand Himalayas attempts have been made to prepare a substantially complete landslide inventory, both in terms of number of landslides and attributes, using multifarious data sources substantiated with thorough field checks. Supplementary historical data sources along with the conventional data sources have been used to prepare the inventory. The approach followed includes pre-field mapping of landslides from different Earth Observation (EO) data followed by interpretation of archival records and detailed field surveys. The data available for the period 1962 to 2013 were used to build up the inventory database in GIS. A total of 644 landslides have been mapped and attributed using conventional EO data and also the different supplementary data sources for an area covering 400 sq. km. An inventory of 151 landslides prepared from EO data have been confirmed and updated during the field study. Finally, the detailed landslide inventory prepared during the course of this study was analysed to understand the behaviour of landslides and role of triggering factors in susceptibility mapping and the geo-environmental conditions governing the magnitude of the event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleotti P. (2004) A warning system for rainfall-induced shallow failures. Engg. Geol., v.73, pp.247–265.

    Article  Google Scholar 

  • Bhatnagar, P.S. (2008) Landslide Zonation studies along Badrinath and Kedarnath Yatra route, Tehri, Pauri, Rudraprayag and Chamoli Districts, Uttaranchal. Unpub. GSI report of FS 1999–2001.

  • Bist, K.S. and Sah, M. P. (1999) The devastating landslide of August 1998 in Ukhimath area, Rudraprayag district, Garhwal Himalaya. Curr. Sci., v.6(4), pp.481–484.

    Google Scholar 

  • Brabb, E.E. and Harrod, B.L. (Eds.) (1989) Landslides: Extent and Economic Significance. A.A. Balkema Publisher, Rotterdam, 385p.

    Google Scholar 

  • Brardinoni, F., Slaymaker, O. and Hassan, M. (2003) Landslide inventory in a rugged forested watershed: a comparison between air-photo and field survey data. Geomorphology, v.54, pp.179–196.

    Article  Google Scholar 

  • Dapporto, S., Aleotti, P., Casagli, N. and Polloni, G. (2005) Analysis of shallow failures triggered by the 14–16 November 2002 event in the Albaredo valley, Valtellina (Northern Italy). Advan. Geociences, v.2, pp.305–308.

    Article  Google Scholar 

  • Devoli G., Morales A. and Hoeg A. (2007) Historical landslides in Nicaragua collection and analysis of data. Landslides, v.4(1), pp.5–18.

    Article  Google Scholar 

  • Dobhal, D.P., Gupta, A.K., Mehta, M. and Khandelwal, D.D., (2013). Kedarnath disaster: facts and plausible causes. Curr. Sci., v.105(2), pp.171–174.

    Google Scholar 

  • Dubey, C.S., Shukla, D.P., Ningreichon, A.S. and Usham, A.L. (2013). Orographic control of the Kedarnath disaster. Curr. Sci., v.105(5), pp.1474–1476.

    Google Scholar 

  • Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E. and Savage, W.Z. (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engg. Geol., v.102, pp.99–111.

    Article  Google Scholar 

  • Ghosh, S., Carranza, E.J.M., van Westen, C.J., Jetten, V.G., Bhattacharyaa, D.N. (2011) Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the Darjeeling Himalayas (India). Geomorphology, v.131, pp.35–56.

    Article  Google Scholar 

  • Ghosh S., van Westen, C.J., Carranza, E.J.M., Jetten, V.G., Cardinali, M., Rossi, M. and Guzzetti, F. (2012) Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities. Engg. Geol., v.128, pp.49–62.

    Article  Google Scholar 

  • Glade, T. (2001) Landslide hazard assessment and historical landslide data—an inseparable couple? in: Glade T., Albini P., Frances F., (Eds.), The use of historical data in natural hazard assessments—advances of technological and natural hazard research. Kluwer, Norwell, pp.153–169.

    Chapter  Google Scholar 

  • Glade T. and Crozier M.J. (1996) Towards a national landslide information base for New Zealand. N Z Geogr., v.52(1), pp.29–40.

    Article  Google Scholar 

  • Guthrie, R.H. and Evans, S.G. (2004a) Magnitude and frequency of landslides triggered by a storm event, Loughborough Inlet, British Columbia. Natural Hazards and Earth System Sciences, v.4, pp.475–483.

    Article  Google Scholar 

  • Guzzetti, F., Cardinali, M. and Reichenbach, P. (1994) The AVI Project: a bibliographical and archive inventory of landslides and floods in Italy. Environ. Managmt., v.18(4), pp.623–633.

    Article  Google Scholar 

  • Guzzetti F., Reichenbach P., Cardinali M., Galli M. and Ardizzonem F. (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology, v.72, pp.272–299.

    Article  Google Scholar 

  • Guzzetti, F., Mondini, A.C., Cardinali, M., Fiorucci, F., Santangelo, M. and Chang, K.-T. (2012) Landslide inventory maps: New tools for an old problem. Earth Sci. Rev., v.112, pp.42–66.

    Article  Google Scholar 

  • Guzzetti, F. and Tonelli, G. (2004) Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards. Nat. Hazards Earth Syst. Sci., v.4, pp.213–232.

    Article  Google Scholar 

  • Islam, M.A., Chattoraj S.L. and Champati Ray P.K. (2014) Ukhimath landslide 2012 at Uttarakhand, India: Causes and consequences. Internat. Jour. Geomatics and Geosci., v.4(3), pp.554–557

    Google Scholar 

  • Jaiswal P., Ghosh T., Kumar H., Bhowmik S., Kumar P. and Ghosh S. (2016) Landslide compendium of Northwestern Himalayas. Geol. Surv. India, Spec. Publ., No.107.

  • Jaiswal P., van Westen C.J. and Jetten V. 2010. Quantitative assessment of landslide hazard along transportation lines using historical records. Landslides, v.8(3), ppp.279–291

    Article  Google Scholar 

  • Jaiswal P. and van Westen C.J. (2009) Estimating temporal probability for landslide initiation along transportation routes based on rainfall thresholds. Geomorphology, v.112, pp.96–105.

    Article  Google Scholar 

  • Khan M.A. and Mishra P.S. (2012) Geology and mineral resources of the States of India, Geol. Surv. India Misc. Publ., No.30, Part-XIII: Uttar Pradesh and Uttarakhand.

  • Martha, T.R. (2011) Detection of landslides by object-oriented image analysis. PhD Thesis.

  • Martha, T.R., Govindharaj Babu, K. and Vinod Kumar, K. (2014) Damage and geological assessment of the 18 September 2011 Mw 6.9 earthquake in Sikkim, India using very high resolution satellite data. Geoscience Frontiers. doi:https://doi.org/10.1016/j.gsf.2013.12.011.

    Article  Google Scholar 

  • Martha, T.R., Kerle, N., Jetten, V., van Westen, C.J. and Kumar, K.V. (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology, v.116(1–2), pp.24–36.

    Article  Google Scholar 

  • Martha, T.R., Roy P., Govindharaj Babu K., Vinod Kumar K., Diwakar P.G., Dadhwal V.K. (2015) Landslides triggered by the June 2013 extreme rainfall event in parts of Uttarakhand state, India. Landslides, v.12, pp.135–146.

    Article  Google Scholar 

  • Mirco Galli, Francesca Ardizzone, Mauro Cardinali, Fausto Guzzetti, Paola Reichenbach (2008) Comparing landslide inventory maps. Geomorphology, v.94, pp.268–289.

    Article  Google Scholar 

  • Nadim F., Kjekstad O., Peduzzi P., Herold C. and Jaedicke C. (2006) Global landslides and avalanche hotspots. Landslides, v.3, pp.159–173.

    Article  Google Scholar 

  • Naithani, A.K., Kumar, D. and Prasad, C., (2002) The catastrophic landslide of 16 July 2001 in Phata Byung area, Rudraprayag District, Garhwal Himalaya, India. Curr.Sci., v.82(8), pp.921–923.

    Google Scholar 

  • Naithani, A.K. and Prasad, C. (1997). Landslide hazard zonation mapping in the Okhimath Kedarnath area, Garhwal Himalaya. Geol. Surv. India Spec. Publ. v.48(2), pp.37–42.

    Google Scholar 

  • NIDM: India Disaster Report 2013 by National Institute of Disaster Management (NIDM). NIDM webpage http://nidm.gov.in/books.asp (accessed on 23.05.2017)

  • Poonama, Rana, N., Champati ray, P.K., Bisht, P., Bagri, D.S., Wasson, R.J., Sundriyal, Y. (2017) Identification of landslide-prone zones in the geomorphically and climatically sensitive Mandakini valley, (central Himalaya), for disaster governance using the Weights of Evidence method. Geomorphology, v.284, pp.41–52.

    Article  Google Scholar 

  • Prakash, S. and Kathait, A. (2014) A Selected Annotated Bibliography and Bibliography on Landslides in India, National Institute of Disaster Management, Ministry of Home Affairs, Govt. of India.

  • Rawat U.S. and Rawat J.S. (1998) A report on geotechnical reconnaissance of the excessive landsliding in August, 1998 near Okhimath, Rudraprayag district, U.P. Unpubld. Geol. Surv. India Report of FS 1997–1998.

  • Stark C.P. and Hovius N. (2001) The characterization of landslide size distributions. Geophys. Res. Lett., v.28(6), pp.1091–1094.

    Article  Google Scholar 

  • Taylor, F. E., Malamud, B. D., Freeborough, K. and Demeritt, D. (2015) Enriching Great Britain’s National Landslide Database by searching newspaper archives. Geomorphology, v.249, pp.52–68.

    Article  Google Scholar 

  • Thapliyal A.P., Mandal J., Lakshmanan K., Rawat P.V.S., Bahuguna H. and Tripathi S.K. (2014) Preliminary slope stability assessment of disaster affected areas of Rudraprayag district, Uttarkahand. Unpubld. Geol. Surv. India Report of FS 2013–2014.

  • Trigila, A., Iadanza, C., Spizzichino, D. (2010) Quality assessment of the Italian landslide inventory using GIS processing. Landslides, v.7, pp.455–470.

    Article  Google Scholar 

  • Uniyal, A. (2013). Lessons from Kedarnath Tragedy of Uttarakhand Himalaya, India. Curr. Sci., v.105(5), pp.1472–1474.

    Google Scholar 

  • Van Westen, C.J., Asch, T.W.J. and Soeters, R. (2006) Landslide hazard and risk zonation-why is it still so difficult? Bull. Engg. Geol. Environ., v.65, pp.67–184.

    Google Scholar 

  • Wieczorek G.F. (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull. Assoc. Engg. Geol., v.21(3), pp.337–342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, T., Bhowmik, S., Jaiswal, P. et al. Generating Substantially Complete Landslide Inventory using Multiple Data Sources: A Case Study in Northwest Himalayas, India. J Geol Soc India 95, 45–58 (2020). https://doi.org/10.1007/s12594-020-1385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-020-1385-4

Navigation