The “Lower Kaimur Porcellanite” (Vindhyan Supergroup) is of Sedimentary Origin and not Tuff

  • 5 Accesses


The ‘Lower Kaimur Porcellanite’ from the Proterozoic Vindhyan Supergroup (∼1700–900? Ma) is not only a chronostratigraphic marker but also an indicator of the tectonic setting of the basin. A few other silicified shaly units (porcellanites) from the upper strata have been thought to be tuff. New petrographic (optical microscopic; SEM-BSE), chemical, and U-Pb zircon geochronological studies of the lowermost of these suspected tuff units, however, do not support an igneous origin for these beds. The rocks do not contain phenocrysts or glass shards, but contain remains of mineralized microbial spheres, mudclasts, and other detrital grains that include one datable zircon grain (∼1715 Ma). Their chemical compositions are not diagnostic of tuff. Despite this result, investigations of other porcellanites from Upper Vindhyan strata is recommended, because they have the potential of identifying crucially important tuff beds.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 264.06

This is the net price. Taxes to be calculated in checkout.


  1. Arnold, G.L., Anbar, A.D., Barling, J., and Lyons, T.W. (2004) Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, v.304, pp.87–90.

  2. Auden, J.B. (1933) Vindhyan sedimentation in the Son Valley, Mirzapur District. Mem. Geol. Surv. India, v.62, pp.141–250.

  3. Basu, A., Patranabis-Deb, S., Schieber, J., and Dhang, P. (2008) Stratigraphic position of the ∼1000 Ma Sukhda Tuff (Chhattisgarh Supergroup, India) and the 500 Ma question. Precambrian Res., v.167, pp.383–388.

  4. Basu, A., Bickford, M.E., and Deasy, R. (2016) Inferring tectonic provenance of siliciclastic rocks from their chemical compositions: A dissent. Sedimentary Geology, v.336, pp.26–35.

  5. Bates, R. L. and Jackson, J. A. (1984) Dictionary of Geological Terms. Geological Institute (Anchor Books). 571 p.

  6. Bellot, N., Boyet, M., Doucelance, R., Bonnand, P., Savov, I.P., Plank, T., and Elliott, T. (2018) Origin of negative cerium anomalies in subduction-related volcanic samples: Constraints from Ce and Nd isotopes. Chemical Geol., v.500, pp.46–63.

  7. Bhattacharyya, A. and Morad, S. (1993) Proterozoic braided ephemeral fluvial deposits: an example from the Dhandraul Sandstone Formation of the Kaimur Group, Son Valley, central India. Sedimentary Geol., v.84, pp.101–114.

  8. Bickford, M.E., Basu, A., Patranabis-Deb, S., Dhang, P.C., and Schieber, J. (2011a) Depositional history of the Chhattisgarh basin, central India: Constraints from new SHRIMP zircon ages. Jour. Geol., v.119, pp.33–50.

  9. Bickford, M.E., Basu, A., Mukherjee, A., Hietpas, J., Schieber, J., Patranabis-Deb, S., Ray, R.K., Guhey, R., Bhattacharya, P., and Dhang, P.C. (2011b) New U-Pb SHRIMP zircon ages of the Dhamda Tuff in the Mesoproterozoic Chhattisgarh basin, Peninsular India: Stratigraphic implications and significance of a 1-Ga thermal-magmatic event. Jour. Geol., v.119, pp.535–548.

  10. Bickford, M.E., Saha, D., Schieber, J., Kamenov, G., Russell, A., and Basu, A. (2013) New U-Pb ages of zircons in the Owk Shale (Kurnool Group) with reflections on Proterozoic porcellanites in India. Jour. Geol. Soc. India, v.82, pp.207–216.

  11. Bickford, M.E., Basu, A., Kamenov, G.D., Mueller, P.A., Patranabis-Deb, S., and Mukherjee, A. (2014) Petrogenesis of 1000 Ma felsic tuffs, Chhattisgarh and Indravati basins, Bastar craton, India: Geochemical and Hf isotope constraints. Jour. Geol., v.122, pp.43–54.

  12. Bickford, M.E., Mishra, M., Mueller, P.A., Kamenov, G.D., Schieber, J., and Basu, A. (2017) U-Pb age and Hf isotopic compositions of magmatic zircons from a rhyolite flow in the Porcellanite Formation in the Vindhyan Supergroup, Son Valley (India): implications for its tectonic significance. Jour. Geol., v.125, pp.367–379.

  13. Bora, S., Kumar, S., Yi, K., Kim, N., and Lee, T.H. (2013) Geochemistry and U-Pb SHRIMP zircon chronology of granitoids and microgranular enclaves from Jhirgadandi Pluton of Mahakoshal Belt, Central Indian Tectonic Zone, India. Jour. Asian Earth Sci., v.70–71, pp.99–114.

  14. Bose, P.K., Sarkar, S., Chakrabarty, S., and Banerjee, S. (2001) Overview of the Meso- to Neoproterozoic evolution of the Vindhyan basin, central India. Sedimentary Geol., v.141–142, pp.395–419.

  15. Calcera, P. (1847) Esposizione Metodica Delle Rocce E dei Terreni del Globo Coll’indicazione Dei Principali Esempii della Sicilia. Pagano, Palermo. 32 p.

  16. Chakraborti, S. (1997) Elucidation of the sedimentary history of the Singhora Group of rocks, Chhattisgarh Supergroup, M.P. Rec. Geol. Surv. India, v.130, pp.180–187.

  17. Chakraborty, C. (2006) Proterozoic intracontinental basin: the Vindhyan example. Jour. Earth System Sci., v.115, pp.3–22.

  18. Chakraborty, C. and Bose, P.K. (1990) Internal structures of sandwaves in a tide-storm interactive system: Proterozoic Lower Quartzite Formation, India. Sedimentary Geol., v.67, pp.133–142.

  19. Chakraborty, P.P. (2006) Outcrop signatures of relative sea level fall on a siliciclastic shelf: Examples from the Rewa Group of Proterozoic Vindhyan Basin. Jour. Earth System Sci., v.115, pp.23–36.

  20. Chakraborty, P.P., Banerjee, S., Das, N.G., Sarkar, S., and Bose, P.K. (1996) Volcaniclastics and their sedimentological bearing in Proterozoic Kaimur and Rewa groups in central India. Mem. Geol. Soc. India, v.36, pp.59–75.

  21. Das, K., Yokoyama, K., Chakraborty, P.P., and Sarkar, A. (2009) Basal tuffs and contemporaneity of the Chattisgarh and Khariar Basins based on new dates and geochemistry. Jour. Geol., v.117, pp.88–102.

  22. Das, K., Chakraborty, P.P., Hayasaka, Y., Kayama, M., Saha, S., and Kimura, K. (2015) c. 1450 Ma regional felsic volcanism at the fringe of the East Indian Craton: constraints from geochronology and geochemistry of tuff beds from detached sedimentary basins. Geol. Soc., London, Mem., v.43, pp.207–221.

  23. Deb, S. P., Schieber, J., and Chaudhuri, A. K. (2007) Microbial mat features in mudstones of the Mesoproterozoic Somanpalli Group, Pranhita-Godavari Basin, India. In: Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Alterman, W., and Catunneanu, O. (Eds.) Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record. pp.171-180.

  24. Denduluri, D.V.S., Mukherjee, A., Balaram, V., and Nagaraju, K. (2006) Proterozoic felsic volcanism in the Chhattisgarh Sedimentary basin, Central India: Its implications on the basin evolution (Abstract). Asia-Oceania Geosciences Society 3rd Annual Meeting.

  25. Derry, L.A. (2015) Causes and consequences of mid-Proterozoic anoxia. Geophys. Res. Lett., v.42, pp.8538–8546.

  26. Ghosh, S.K. (1971) Petrology of the porcellanite rocks of Samaria area, Sidhi Dist., M.P. Quart. Jour. Geol., Min. Metall. Soc. India, v.43, pp.153–164.

  27. Gupta, S., Jain, K.C., Srivastava, V.C., and Mehrotra, R.D. (2003) Depositional environment and tectonism during the sedimentation of the Semri and Kaimur Groups of rocks, Vindhyan Basin. Jour. Palaeontol. Soc. India, v.48, pp.181–190.

  28. Holland, H.D. (2006) The oxygenation of the atmosphere and oceans. Phil. Trans. Royal Soc. B: Biological Sciences, v.361, pp.903–915.

  29. Kah, L.C. and Bartley, J.K. (2011) Protracted oxygenation of the Proterozoic biosphere. Internat. Geol. Rev., v.53, pp.1424–1442.

  30. Kale, V.S. (2016) Proterozoic basins of Peninsular India: status within the global Proterozoic systems. Proc. Indian National Sci. Acad., v.82, pp.461–477.

  31. Lyons, T.W., Anbar, A.D., Severmann, S., Scott, C., and Gill, B.C. (2009) Tracking euxinia in the ancient ocean: a multiproxy perspective and Proterozoic case study. Annual Rev. Earth Planet. Sci., v.37, pp.507–534.

  32. Mallet, F.R. (1869) On the Vindhyan Series, as exhibited in the north-western and central Provinces of India. Mem. Geol. Surv. India, v.7, pp.1–129.

  33. Mandal, S., Choudhuri, A., Mondal, I., Sarkar, S., Chakraborty, P.P., and Banerjee, S. (2019) Revisiting the boundary between the Lower and Upper Vindhyan, Son valley, India. Jour Earth Systems Sci, v.128, 222. DOI:

  34. Mishra, M., Bickford, M.E., and Basu, A. (2018) U-Pb Age and Chemical Composition of an ash bed in the Chopan Porcellanite Formation, Vindhyan Supergroup, India. Jour. Geol., v.126, pp.553–560.

  35. Mishra, M., Srivastava, V., Sinha, P.K., and Srivastava, H.B. (2017) Geochemistry of Mesoproterozoic Deonar pyroclastics from Vindhyan Supergroup of central India: Evidences of felsic magmatism in the Son Valley. Jour. Geol. Soc. India, v.89, pp.375–385.

  36. Mukherjee, A., Bickford, M.E., Hietpas, J., Schieber, J., and Basu, A. (2012) Implications of a newly dated ca. 1000 Ma rhyolitic tuff in the Indravati basin, Bastar craton, India. Jour. Geol., v.120, pp.477–485.

  37. Patranabis-Deb, S., Bickford, M.E., Hill, B., Chaudhuri, A.K., and Basu, A. (2007) SHRIMP ages of zircon in the uppermost tuff in Chattisgarh Basin in central India require ∼500 Ma adjustment in Indian Proterozoic stratigraphy. Jour. Geol., v.115, pp.407–415.

  38. Planavsky, N.J., McGoldrick, P., Scott, C.T., Li, C., Reinhard, C.T., Kelly, A.E., Chu, X., Bekker, A., Love, G.D., and Lyons, T.W. (2011) Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature, v.477, pp.448–451.

  39. Quasim, M.A., Khan, I., and Ahmad, A.H.M. (2017) Integrated petrographic, mineralogical, and geochemical study of the upper Kaimur Group of rocks, Son Valley, India: Implications for provenance, source area weathering and tectonic setting. Jour. Geol. Soc. India, v.90, pp.467–484.

  40. Quasim, M.A. and Ahmad, A.H.M. (2015) Petrofacies and tectonic setup of Kaimur Group of rocks, Son Valley, India. The Palaeobotanist, v.64, pp.1–11.

  41. Radhakrishna, B. P. (1987) Purãna Basins of Peninsular India. Mem. Geol. Soc. India, no.6, 518p.

  42. Ramakrishnan, M. and Vaidyanadhan, R. (2010) Geology of India. Geological Society of India, Bangalore, v.1, 552 p.

  43. Rasmussen, B., Bose, P.K., Sarkar, S., Banerjee, S., Fletcher, I.R., and McNaughton, N.J. (2002) 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, Lower Vindhyan, India: Possible implications for early evolution of animals. Geology, v.30, pp.103–106.

  44. Ray, J.S., Martin, M.W., Veizer, J., and Bowring, S.A. (2002) U-Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India. Geology, v.30, pp.131–134.

  45. Rogers, J.J.W. (1996) A history of continents in the past three billion years. Jour. Geol., v.104, pp.91–107.

  46. Saha, D. and Tripathy, V. (2012) Tuff beds in Kurnool subbasin, southern India and implications for felsic volcanism in Proterozoic intracratonic basins. Geoscience Frontiers, v.3, pp.429–444.

  47. Sarkar, S., Banerjee, S., Chakraborty, S., and Bose, P.K. (2002a) Shelf storm flow dynamics: insight from the Mesoproterozoic Rampur Shale, central India. Sedimentary Geol., v.147, pp.89–104.

  48. Sarkar, S., Chakraborty, S., Banerjee, S., and Bose, P. K. (2002b) Facies sequence and cryptic imprint of sag tectonics in late Proterozoic Sirbu Shale, central India. In: Alterman, W. and Corcoran, P. L. (Eds.) Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems. Internat. Assoc. Sedimentol. Spec. Publ., no.33, pp. 339–350.

  49. Sarkar, S., Eriksson, P.G., and Chakraborty, S. (2004) Epeiric sea formation on Neoproterozoic supercontinent break-up: A distinctive signature in coastal storm bed amalgamation. Gondwana Res., v.7, pp.313–322.

  50. Sarkar, S., Banerjee, S., Eriksson, P.G., and Catuneanu, O. (2005) Microbial mat control on siliciclastic Precambrian sequence stratigraphic architecture. Sedimentary Geol., v.176, pp.195–209.

  51. Schieber, J. (1989) Pyrite mineralization in microbial mats from the mid-Proterozoic Newland Formation, Belt Supergroup, Montana, U.S.A. Sedimentary Geol., v.64, pp.79–90.

  52. Schieber, J. (2016) Mud re-distribution in epicontinental basins: Exploring likely processes. Marine Petrol. Geol., v.71, pp.119–133.

  53. Schieber, J. and Bennett, R. (2013) Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation, western Canada foreland basin: Discussion. Jour. Sediment. Res., v.83, pp.1198–1199.

  54. Schieber, J., Sur, S., and Banerjee, S. (2007) Benthic microbial mats in black shale units from the Vindhyan Supergroup, Middle Proterozoic of India: the challenges of recognizing the genuine article. In: Schieber, J., Bose, P. K., Eriksson, P. G., Banerjee, S., Sarkar, S., Alterman, W., and Catunneanu, O. (Eds.) Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record. pp. 189–197.

  55. Schieber, J., Miclãů, C., Seserman, A., Liu, B., and Teng, J. (2019) When a mudstone was actually a “sand”: results of a sedimentological investigation of the bituminous marl formation (Oligocene), eastern Carpathians of Romania. Sedimentary Geol., v.384, pp.12–28.

  56. Sen, S., Mishra, M., and Patranabis-Deb, S. (2014) Petrological study of the Kaimur Group sediments, Vindhyan Supergroup, Central India: implications for provenance and tectonics. Geosci. Jour., v.18, pp.307–324.

  57. Sen, S. and Mishra, M. (2019) Significance of the tuffaceous beds associated with the Bijaigarh Shale of the Kaimur Group, Vindhyan Supergroup, Central India and their correlation with tuffs in other contemporaneous Proterozoic basins. Jour. Earth System Sci., v.128,: 217. DOI:

  58. Shen, Y., Knoll, A.H., and Walter, M.R. (2003) Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature, v.423, pp.632–635.

  59. Shields, G.A. and Stille, P. (2001) Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geol., v.175, pp.29–48.

  60. Su, W., Zhang, S., Huff, W.D., Li, H., Ettensohn, F.R., Chen, X., Yang, H., Han, Y., Song, B., and Santosh, M. (2008) SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso- to Neoproterozoic history of the North China Craton. Gondwana Res., v.14, pp.543–553.

  61. Teall, J.J.H. (1884) On the chemical and microscopical characters of the Whin Sill. Quart. Jour. Geol. Soc. London, v.40, pp.640–657.

  62. Tripathy, G.R. and Singh, S.K. (2015) Re-Os depositional age for black shales from the Kaimur Group, Upper Vindhyan, India. Chemical Geol., v.413, pp.63–72.

Download references


We gratefully acknowledge the support from Indiana University and Syracuse University. AC was supported by DST INSPIRE Faculty Program, Govt. of India. SS acknowledges the support from DST PURSE II and CAS, Department of Geological Sciences, Jadavpur University. A National Science Foundation equipment grant to J. S. Schieber (EAR-0318769) provided funds for the purchase of the analytical SEM used to acquire the images in this report. Ms. Ruth Droppo kindly adjusted and finalized several illustrations. We thank the extremely helpful anonymous reviewer and the editor at whose advice we have removed extraneous matter and improved the text.

Author information

Correspondence to Abhijit Basu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choudhuri, A., Schieber, J., Sarkar, S. et al. The “Lower Kaimur Porcellanite” (Vindhyan Supergroup) is of Sedimentary Origin and not Tuff. J Geol Soc India 95, 17–24 (2020).

Download citation