Advertisement

Journal of the Geological Society of India

, Volume 94, Issue 5, pp 538–544 | Cite as

Evaluation of the Sources of Yozgat Fountain Water in Terms of Seasonal Distribution, Turkey

  • Vugar Ali TurksoyEmail author
  • Serdar Deniz
  • Lutfiye Tutkun
  • Gullu Kirat
Research Articles
  • 7 Downloads

Abstract

This study was carried out to compare the seasonal variation in the concentration of elements in 147 fountain water samples, collected from Yozgat province and its surroundings. The study area comprises of lower Eocene Topcu Formation and the upper Cretaceous — Paleocene Yozgat batholith Formation. A study of the physical and chemical properties of the water samples show that average pH values may be classified as I and II as per Water Pollution Control Regulation. The concentrations of As, B, Ba, Cd, Cr, Cu, F, Pb, Ni, Sb, Se and U were lower than the WHO (2011) fountain water guide limits.

The techniques of principle factor analysis and cluster analysis were used to assess and examine the results obtained from the study area. The data values consisting of 29 elements were divided into groups of similar parameters, forming 8 sets. Using principle factor analyses, large part of the variation in the data were determined (77.71% of the variance).

According to World Health Organization (WHO) safe drinking water is necessary for human health and 80% diseases are water borne. The heavy metals are of major concern, mainly due to their presence at relatively high concentrations in fountain water and their toxic effects on human health. The aim of this study is to evaluate the sources of fountain water in the Yozgat region in terms of seasonal toxicity in line with WHO limits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agaoglu, S., Alisarli, M., Alemdar, S. (2007) Van bölgesi su kaynaklarýnda flor düzeylerinin belirlenmesi. YYU Veteriner Fakültesi Dergisi, v.18(1), pp.59–65.Google Scholar
  2. Akce, M.A. and Kadioglu, Y.K. (2003) Yozgat Batolitindeki kabuk kökenli lökogranitlerin jeoloji ve petrolojisi. S. Demirel Üni., Müh.-Mim.Fak. 20. Yil Jeol. Semp., Bildiri Özleri, Isparta, pp.1-140.Google Scholar
  3. Akce, M.A. and Kadioglu, Y.K. (2004) Petrology of S-Type granites and gabbros of Yozgat Batholith: Central Anatolian Crystalline Complex. Geochim. Cosmochim. Acta, v.68(11), pp.A659.Google Scholar
  4. Akce, M.A. and Kadioglu, Y.K. (2005). Yozgat Batoliti Kuzey Bölümündeki Lökogranitlerin Petrolojisi. Türkiye Jeoloji Bülteni, v.48(2), pp.1–20.Google Scholar
  5. Akce, M.A. and Kadioglu, Y.K. (2006) Sarihacili Lökogranitinin Mineral Kimyasi: Yozgat Batoliti Kuzeyi. 59. Türkiye Jeoloji Kurultayi Bildiri Özleri, v.273, pp.20–24.Google Scholar
  6. Akce, M.A. (2003) Yozgat Batolitinin Kuzey Bölümünün Jeoloji ve Petrolojisi. Yüksek Lisans Tezi (yayinlanmamis), Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Jeoloji Mühendisligi Anabilim Dali, Ankara. 1–118.Google Scholar
  7. Akce, M.A. (2010) Yozgat Intrüzif Kompleksinin Jeolojisi, Petrolojisi Ve Orta Anadolu Kristalen Karmasigindaki Zamansal ve Mekansal Konumu. Doktora Tezi (yayinlanmamis). Ankara Üniversitesi Fen Bilimleri Enstitüsü, Jeoloji Mühendisligi Anabilim Dali, Ankara, 240.Google Scholar
  8. Arhin, E., Kazapoe, R., Mahamuda, A. (2018) Medical Geology and Health: An Approach to Address Diseases Related to Natural Environment-Reviewing the Ghanaian Situation. Preprints, doi: https://doi.org/10.20944/preprints201806.0251.v1
  9. Arhin, E., Torkonoo, S., Zango, M. S. and Kazapoe, R. (2018) Gold in Plant: a biogeochemical approach in detecting gold anomalies undercover- a case study at Pelangio Gold Project at Mamfo Area of Brong Ahafo, Ghana. Ghana Mining Jour., v.18(1), pp.39–48. doi:  https://doi.org/10.4314/gm/v18i1.5 Google Scholar
  10. Arslan, H., Güler, M., Cemek, B. and Demir, Y. (2007) Bafra Ovasi yeralti suyu kalitesinin sulama açisindan degerlendirilmesi. Tekirdag Ziraat Fakültesi Dergisi, v.4(2), pp.219–226.Google Scholar
  11. ATSDR (Agency for Toxic Substances and Disease Registry). (2015) Toxicologial Profiles, Toxic Substances Portal.Google Scholar
  12. Aydin, F. (2017) Investigation of Van Çaldiran Plain Surface Waters in terms of Fountain and Irrigation Water. Igdir Univ. Jour. Inst. Sci. & Tech., v.7(3), pp.171–179.CrossRefGoogle Scholar
  13. Aydin, N. (2016) Investigation of Geology, Geochemistry and operability of Temrezli (Sorgun Yozgat) Uranium Deposit. Balikesir University Institute of Science Geological Engineering Balikesir. Ph.D Thesis. pp.1-112.Google Scholar
  14. Baba, A. and Gunduz, O. (2010) Effect of Alteration Zones on Water Quality: A Case Study from Biga Peninsula, Turkey. Arch Environ. Contam. Toxicol., v.58, pp.499–513CrossRefGoogle Scholar
  15. Bakis, R., Koyuncu, H., Ozkan, A., Banar, M, Yilmaz, G. and Yorukogullari, E. (2011) An Investigation Of The Surface And Groundwater Pollution Level Ýn The Porsuk Basin. Anadolu Univ. Jour. Sci. Tech. — Applied Sciences and Engineering, v.12(2), pp.75–89.Google Scholar
  16. Baskan, M.B. and Pala, A. (2009) Içme sularinda arsenik kirliligi: Ülkemiz açisindan bir degerlendirme. Pamukkale Üniversitesi Müh. Bilimleri Dergisi, v.15, pp.69–79.Google Scholar
  17. Bibi, S., Khan, R.L., Nazir, R. (2016) Heavy metals in fountain water of Lakki Marwat District, KPK, Pakistan. World Appld. Sci. Jour., v.34(1), pp.15–19. doi: https://doi.org/10.5829/idosi.wasj.2016.34.1.10252 Google Scholar
  18. Boztug, D. (1995) Kirsehir blogundaki Yozgat batoliti dogu kesiminin (Sorgun güneyi) petrografisi, ana element jeokimyasi ve petrojenezi. Istanbul Üniversitesi, Yerbilimleri, v.9(1-2), pp.1–20.Google Scholar
  19. Briggs D. (2003) Environmental pollution and the global burden of disease. British Medical Bull., v.68, pp.1–24.CrossRefGoogle Scholar
  20. Ekici, T. and Boztug, D. (1997) Anatolid-Pontid Çarpisma Sisteminin Pasif Kenarinda Yer AlanYozgat Batolitinde Syn-COLG ve Post-COLG Granitoyid Birlikteligi. Yerbilimleri, v.30, pp.519–538.Google Scholar
  21. Erdogan, B., Akay, E., Ugur, M.S. (1996) Geology of the Yozgat Region and Evolution of the Collisional Cankiri Basin. Internat. Geol. Rev., v.38, pp.788–806.CrossRefGoogle Scholar
  22. Erler, A. and Bayhan, H. (1995) Orta Anadolu Granitoidlerinin genel degerlendirilmesi ve sorunlarý. Yerbilimleri, v.17, pp.49–67.Google Scholar
  23. Goncuoglu, M.C. and Türeli, T.K. (1993) Orta Anadolu Ofiyoliti plajiyogranitlerinin petrolojisi ve jeodinamik yorumu (Aksaray-Türkiye). Doga Türk Yerbilimleri Derg. v.2, pp.195–203Google Scholar
  24. Goncuoglu, M.C., Erler, A., Toprak, V., Olgun, E., Yalýnýz, K., Kuscu, Köksal, S. et al. (1993) Geology of the cenral part of the Central Anatolian Massif, Part 3: Geological evolution of the Central Kýzýlýrmak Tertiary Basin: Unpubl. Report No. 3313, Turkish Petroleum Company (in Turkish).Google Scholar
  25. Goncuoglu, M.C., Erler, A., Toprak, V., Yaliniz, K., Olgun, E., Rojay, B. (1992) Geology of the western part of the Central Anatolian Massif, Part 2: Central Section: Unpubl. Report No.3155, Turkish Petroleum Company (in Turkish).Google Scholar
  26. Goncuoglu, M.C., Toprak, V., Kuscu, Erler, A., Olgun, E. (1991) Geology of the western part of the Central Anatolian Massif, Part 1: Southern Section: Unpubl. Report No. 2909, Turkish Petroleum Company (in Turkish).Google Scholar
  27. Gorur, N., Oktay, F.Y., Seymen, and Sengor, A.M.C. (1984) Paleotectonic evolution of Tuzgölü basin complex, Central Turkey. In: J.E. Dixon and A.H.F. Robertson (Eds.), The geological evolution of the Eastern Mediterranean, Spec. Publ. Geol. Soc., v.17, pp.81-96.Google Scholar
  28. Haseena, M., Malik, M.F., Javed, A., Arshad, S., Asif, N., Zulfiqar, S., et al. (2017) Water pollution and human health. Review Article — Environmental Risk Assessment and Remediation, v.1(3), pp.16–19.Google Scholar
  29. Houghton, W.E. (1999) Water resources: Health, environment and development. Routledge, Florence, KY, USA, 14p.Google Scholar
  30. Ip, C.C.M., Li, X.D., Zhang, G., Wai, O.W.H., Li, Y.S. (2006) Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environ. Poll., doi: https://doi.org/10.1016/j.envpol.2006.06.028 CrossRefGoogle Scholar
  31. Iritas, S.B., Turksoy, V.A., Deniz, S., Kocoglu, S., Kirat, G., Demirkesen, A.C., Baba, A. (2018)A quality assessment of public water fountains and relation to human health: a case study from Yozgat, Turkey. Water.Environ. Jour., pp.1-18. doi:  https://doi.org/10.1111/wej.12422 CrossRefGoogle Scholar
  32. Kadioglu, Y.K. (2001) Yozgat-Kirsehir-Kirikkale Çevresinin Jeoloji (Yeryapisi) ve Kiriklarinin Genel Özellikleri. Yukari Orta Anadolu Depremleri (Yozgat-Kirsehir- Kirikkale) Jeofizik Toplantisi, Yozgat.Google Scholar
  33. Kadioglu, Y.K. and Gulec, N. (1999) Types and genesis of the enclaves in central Anatolian granitoids. Geol. Jour., v.34, pp.243–256.Google Scholar
  34. Khan, N., Hussain, S.T., Saboor, A. (2013) Physiochemical investigation of the fountain water sources from Mardan, Khyber Pakhtunkhwa, Pakistan. Internat. Jour. Physical Sci., v.8(33), pp.1661–71. doi:  https://doi.org/10.5897/IJPS2013.3999 Google Scholar
  35. Kirat, G. and Aydin, N. (2018) Stream sediments geochemical investigations in Deliklitas and Ovacik (Balikesir), Turkey. Separation Science and Technology. doi:  https://doi.org/10.1080/01496395.2018.1541468.CrossRefGoogle Scholar
  36. Kul, S. (2014) Istatistik Sonuçlarinin Yorumu: P Deðeri Ve Güven Araligi Nedir?, Ekstraplevral, s.12, http://www.toraks.org.tr/uploadFiles/book/file/1832014154715-113.pdf, E.T. 01.01.2018
  37. Liu, W.X., Li, X.D., Shen, Z.G., Wang, D.C., Wai, O.W. H. and Li, Y.S. (2003) Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environ. Poll., v.121, pp.377–388.CrossRefGoogle Scholar
  38. Lohani, M.B., Singh, A., Rupainwar, D.C. and Dhar, D.N. (2008) Seasonal variation of heavy metals in river Gomti of Lucknow city region. Environ. Monit. Assess., v.147, pp.253–263CrossRefGoogle Scholar
  39. McBean, E.A. and Rovers, F.A. (1998) Statistical Procedures for Analysis of Environmental Monitoring Data and Risk Assessment, Prentice-Hall Publishing Co. Inc., Englewood Cliffs, New Jersey.Google Scholar
  40. MTA, (2007) 1/100000 Ölçekli Türkiye Jeoloji Haritalari Serisi, I33 Paftasi, No:80, MTA, Ankara.Google Scholar
  41. Orakwe, L.C. and Chukwuma, E.C. (2015) Multivariate Analysis Of Ground Water Characteristics Of Geological Formations Of Enugu State Of Nigeria. Internat. Jour. Scientific & Technology Res., v. 4, pp.08.Google Scholar
  42. Oruc, N. (2008) Occurrence and problems of high fluoride waters in Turkey: an overview. Environmental Geochemistry and Health, v.30, pp.315–323.CrossRefGoogle Scholar
  43. Ozkan, G., Koseoglu, M. and Bilgin, A., (1988) Isparta içme suyundaki fluorürün çevre kayaçlarla iliǾkisi. Ulusal 1. Hidrojeoloji Sempozyumu, Ankara, pp.247-256.Google Scholar
  44. Republic of Turkey Ministry of Forestry and Water Affairs. (2012) Regulation Regarding the Quality of Surface Waters Obtained Fountain Water or Planned to Obtain. Available at: https://www.resmigazete.gov.tr/eskiler/2012/06/20120629-9.htm.
  45. Republic of Turkey Ministry of Health. (2005) Regulation on Waters for Human Consumption. Available at: https://www.resmigazete.gov.tr/eskiler/2005/02/20050217-3.htm.
  46. Research Report. (2010) Yozgat-Sivas-Kayseri Planlama Bölgesi, 1/100.000 Ölçekli Çevre Düzeni Plani Arastirma Raporu 2010. http://www.emrakutluayplanlama.com.tr/arastirma_raporu_ysk.pdf
  47. Reyes-Gomez, V. M., Alarcon-Herrera, M.T., Gutierrez, M., Lopez, D. N. (2013) Fluoride and arsenic in an alluvial aquifer system in Chihuahua, Mexico: Contaminant Levels, Potential Sources, and Co-occurrence. Water Air Soil Pollut, v.224(1433), pp.1–15.Google Scholar
  48. Romero, A., Gonzalez, I., Galah, E. (2006) Estimation of potential pollution of waste mining dumps at Penãdel Hierro (Pyrite Belt, SW Spain) as a base for future mitigation actions. Appld. Geochem., v.21, pp.1093–1108.CrossRefGoogle Scholar
  49. Saha, P. and Paul, B. (2016) Assessment of Heavy Metal Pollution in Water Resources and their Impacts: A Review. Jour. Basic and Appld. Engg. Res., v.3(8), pp.671–675.Google Scholar
  50. Sengor, A.M.C. (1984) Türkiye’nin tektonik tarihinin yapisal siniflamasi. Proceedings of Ketin Syposium. Türkiye Jeol. Kur., Ankara, pp.37-61.Google Scholar
  51. Shrestha, S., and Kazama, F. (2007) Assessment of surface water quality using multivariate statistical techniques, A case study of the Fuji river basin, Japan. Environ. Modeling Software, v.22(4), pp.464–475.CrossRefGoogle Scholar
  52. Sorlini, S., Palazzini, D., Sieliechi, J.M., Ngassoum, M.B. (2013) Assessment of Physical- Chemical Fountain Water Quality in the Logone Valley (Chad-Cameroon). Sustainability, v.5, pp.3060–3076. doi: https://doi.org/10.3390/su5073060.CrossRefGoogle Scholar
  53. Spanos, T., Ene, A., Xatzixristou, C. and Papaioannou, A. (2014) Assessment of Groundwater Quality and Hydrogeological Profile of Kavala Area, Northern Greece, Rom. Jour. Phys, v.60(7-8), pp.1139–1150.Google Scholar
  54. Tuncay, H. (1994) Su kalitesi. Ege Üniversitesi Ziraat Faakültesi Yayinlari No:512. Ege Üniversitesi Ziraat Fakültesi Ofset Basimevi Bornova Izmir, 1.Google Scholar
  55. U.S. Environmental Protection Agency. (2018) National Primary Fountain Water Regulations, Environmental Protection Agency (EPA). Washington, DC. American Publish Health Association.Google Scholar
  56. Ucmaklioglu, S. (2011) Aydin’da Içme Suyu Nitrit ve Nitrat Düzeylerinin Yüksek Basinçli Sivi Kromatografisi (YBSK) ile Belirlenmesi. Adnan Menderes Üniversitesi Saglik Bilimleri Enstitüsü Farmakoloji ve Toksikoloji Anabilim dali, VFT-YL-2011-0001. Yüksek Lisans Tezi, pp.1-40.Google Scholar
  57. USEPA (U.S. Environmental Protection Agency) (2015) Regulated fountain water contaminants. Online database. Available at: http://www.epa.gov/dwstandardsregulations#Disinfectants
  58. Varol, S. and Sekerci M. (2018) Determination of usability and hydrogeochemical propertiesof Korkuteli (Antalya) water resources. Bull. Earth Sci. Applic. Res. Centre of Hacettepe University. Yerbilimleri, v.39(1), pp.1–18.Google Scholar
  59. Vialle, C., Sablayrolles, C., Lovera, M., Jacob, S., Huau, M.C., and Vignoles, M. (2011) Monitoring of water quality from roof runoff: Interpretation using multivariate analysis. Water Res., v.45, pp.3765–3775.CrossRefGoogle Scholar
  60. Wang, S. and Mulligan, N. (2006) Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. Science of the Total Environment, v.366, pp.701–721.CrossRefGoogle Scholar
  61. WHO (1998) Pesticide residues in food—1997 evaluations. Part II—Toxicological and environmental. Geneva, World Health Organization, Joint FAO/WHO Meeting on Pesticide Residues (WHO/PCS/98.6)Google Scholar
  62. WHO (2011) Prevalence and incidence of selected sexually transmitted infections. Chlamydia trachomatis, Neisseria gonorrhoeae, syphilis, and Trichomonas vaginalis. Methods, and results used by WHO to generate 2005 Estimates. Available at: http://www.who.int/reproductivehealth/publications/rtis/9789241502450/en/ (accessed January 17, 2019).
  63. WHO (2017) Guidelines for Fountain-Water Quality: Fourth Edition Incorporating the First Addendum. Geneva: World Health Organization, 631p.Google Scholar

Copyright information

© GEOL. SOC. INDIA 2019

Authors and Affiliations

  • Vugar Ali Turksoy
    • 1
    Email author
  • Serdar Deniz
    • 2
  • Lutfiye Tutkun
    • 3
  • Gullu Kirat
    • 4
  1. 1.Department of Public HealthYozgat Bozok University Faculty of MedicineYozgatTurkey
  2. 2.Provincial Health DirectorateMalatyaTurkey
  3. 3.Department of BiochemistryYozgat Bozok University Faculty of MedicineYozgatTurkey
  4. 4.Department of Geological EngineeringFaculty of Engineering and ArchitectureYozgatTurkey

Personalised recommendations