Advertisement

Journal of the Geological Society of India

, Volume 94, Issue 5, pp 471–479 | Cite as

A New Record of Acanthomorphic Acritarch Tappania Yin from the Early Mesoproterozoic Saraipali Formation, Singhora Group, Chhattisgarh Supergroup, India and its Biostratigraphic Significance

  • Veeru Kant SinghEmail author
  • Mukund Sharma
  • Vladimir N. Sergeev
Research Articles

Abstract

In the present paper, well-preserved specimens of taxonomically distinctive Proterozoic eukaryotic fossil Tappania Yin are recorded for the first time from the rocks of the Saraipali Formation of the Singhora Group, Chhattisgarh Supergroup, India. In the global context, among the various species of this genus, Tappania plana is widely distributed in the latest Palaeoproterozoic (Statherian) to the early Mesoproterozoic (Calymmian) organic-walled microfossil assemblages. Tappania plana of the Saraipali is subjected to transmitted light microscopy, confocal laser scanning microscopy and laser Raman spectroscopy and these results are presented. Collectively, the occurrence of remarkable microfossil Tappania and other associated microfossils in the Saraipalli Formation of rocks demonstrate the Calymmian age for the lower sediments of the Chhattisgarh Supergroup.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We are thankful to the Director, Birbal Sahni Institute of Palaeosciences, Lucknow, for providing the lab facility and permission to publish the work (BSIP/RDCC/79/2018-2019). Authors are grateful to anonymous reviewer for constructive suggestions. The present research is partially funded by Department of Science and Technology, New Delhi, India under DST- RFBR project (INT/RUS/RFBR/P-278).

References

  1. Adam, Z.R., Skidmore, M.L., Mogk, D.W. & Butterfield, N.J., (2017) A Laurentian record of the earliest fossil eukaryotes. Geology v.45, pp.387–390.CrossRefGoogle Scholar
  2. Babu, R. and Singh, V.K. (2011) Record of aquatic carbonaceous metaphytic remains from the Proterozoic Singhora Group of Chhattisgarh Supergroup, India and their significance. Jour. Evolutionary Biology Res., v.3, pp.47–66.Google Scholar
  3. Baludikay, B.K., Storme, J.Y., François, C., Baudet, D. and Javaux, E.J. (2016) A diverse and exquisitely preserved organic-walled microfossil assemblage from the Meso-Neoproterozoic Mbuji-Mayi Supergroup (Democratic Republic of Congo) and implications for Proterozoic biostratigraphy. Precambrian Res., v.281, pp.166–184.CrossRefGoogle Scholar
  4. Beghin, J., Storme, J.-Y., Blanpied, C., Gueneli, N., Brocks, J.J., Poulton, S.W. and Javaux, E.J. (2017) Microfossils from the late Mesoproterozoic — early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa. Precambrian Res., v.291, pp.63–82.CrossRefGoogle Scholar
  5. Bickford, M.E., Basu, A., Patranabis-Deb, S., Dhang, P.C. and Schieber, J. (2011) Depositional history of the Chhattisgarh Basin, central India; constraints from new SHRIMP zircon ages. Jour. Geol. v.119, pp.33–50.CrossRefGoogle Scholar
  6. Butterfield, N.J. (2000) Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, v.26, pp.386–404.CrossRefGoogle Scholar
  7. Butterfield, N.J. (2005a) Probable proterozoic fungi. Paleobiology v.31, pp.165–182.CrossRefGoogle Scholar
  8. Butterfield, N.J. (2005b) Reconstructing a complex early Neoproterozoic eukaryote, Wynniatt Formation, arctic Canada. Lethaia v.38, pp.155–169.CrossRefGoogle Scholar
  9. Butterfield, N.J. (2015) Early evolution of the Eukaryota. Palaeontology, v.58, pp.5–17.CrossRefGoogle Scholar
  10. Chakraborty, P.P., Dey, S. and Mohanty, S.P. (2010) Proterozoic platform sequences of Peninsular India: Implications towards basin evolution and supercontinent assembly. Jour. Asian Earth Sci., v.39, pp.589–607.CrossRefGoogle Scholar
  11. Chakraborty, P.P., Saha, S. and Das, P. (2015) Geology of Mesoproterozoic Chhattisgarh Basin, central India: current status and future goals. Mem. Geol. Soc. London, no.43, pp.185–205.CrossRefGoogle Scholar
  12. Chakraborty, P.P., Sarkar, S. and Patranabis-Deb, S. (2012) Tectonics and sedimentation of Proterozoic basins of peninsular India. Proc. Indian National Sci. Acad., v.78, pp.393–400.Google Scholar
  13. Cohen, P.A. and Macdonald, F.A. (2015) The Proterozoic Record of Eukaryotes. Paleobiology, v.41, pp.610–632.CrossRefGoogle Scholar
  14. Das, D.P., Dutta, N.K., Dutta, D.R., Thanavellu, C. and Baburao, K. (2003) Singhora Group — The oldest Proterozoic lithopackage of eastern Bastar Craton and its significance. Indian Minerals, v.57, pp.127–138.Google Scholar
  15. Das, D.P., Kundu, A., Das, N., Dutta, D.R., Kumaran, K., Ramamurthy, S., Thanavelu, C. and Rajaiya, V. (1992) Lithostratigraphy and sedimentation of Chhattisgarh Basin. Indian Minerals, v.46, pp.271–288.Google Scholar
  16. Das, K., Yokoyama, K., Chakraborty, P.P. and Sarkar, A. (2009) Basal tuffs and contemporaneity of the Chhattisgarh and Khariar Basins based on new dates and geochemistry. Jour. Geol., v.117, pp.88–102.CrossRefGoogle Scholar
  17. Dhang, P.C. and Patranabis-Deb, S. (2011) Lithostratigraphy of the Chhattisgarh Supergroup around Singhora-Saraipali area and its tectonic Implication. Mem. Geol. Soc. India, no.77, pp.493–515.Google Scholar
  18. Downie, C. and Sarjeant, W.A.S. (1963) On the interpretation and status of some hystrichosphere genera. Palaeontology, v.6, pp.83–96.Google Scholar
  19. Hofmann, H.J. and Jackson, G.D. (1994) Shale-Facies Microfossils from the Proterozoic Bylot Supergroup, Baffin-Island, Canada. Jour. Paleont., v.68, pp.1–39.CrossRefGoogle Scholar
  20. Holland, H.D. (2006) The oxygenation of the atmosphere and oceans. Phil. Trans. Royal Soc. B: Biological Sciences v.361, pp.903–915.CrossRefGoogle Scholar
  21. Hu, G., Zhao, T. and Zhou, Y. (2014) Depositional age, provenance and tectonic setting of the Proterozoic Ruyang Group, southern margin of the North China Craton. Precambrian Res., v.246, pp.296–318.CrossRefGoogle Scholar
  22. Javaux, E.J. and Knoll, A.H. (2017) Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. Jour. Paleont., v.91, pp.199–229.CrossRefGoogle Scholar
  23. Javaux, E.J., Knoll, A.H. and Walter, M.R. (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature, v.412, pp.66–69.CrossRefGoogle Scholar
  24. Javaux, E.J., Knoll, A.H. and Walter, M.R. (2004) TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology, v.2, pp.121–132.CrossRefGoogle Scholar
  25. Knoll, A.H., Javaux, E.J., Hewitt, D. and Cohen, P. (2006) Eukaryotic organisms in Proterozoic oceans. Phil. Trans. Royal Soc. B: Biological Sciences, v.361, pp.1023–1038.CrossRefGoogle Scholar
  26. Lan, Z.W., Li, X.H., Chen, Z.Q., Li, Q.L., Hofmann, A., Zhang, Y.B., Zhong, Y., Liu, Y., Tang, G.Q., Ling, X.X. & Li, J. (2014) Diagenetic xenotime age constraints on the Sanjiaotang Formation, Luoyu Group, southern margin of the North China Craton: Implications for regional stratigraphic correlation and early evolution of eukaryotes. Precambrian Res., v.251, pp.21–32.CrossRefGoogle Scholar
  27. Loron, C., Rainbird, R., Turner, E.C., Greenman, J.W. and J. Javaux, E. (2019a) Organic-walled microfossils from the late Mesoproterozoic to early Neoproterozoic lower Shaler Supergroup (Arctic Canada): Diversity and biostratigraphic significance. Precambrian Res., v.321, pp.349–376.CrossRefGoogle Scholar
  28. Loron, C.C., Francois, C., Rainbird, R.H., Turner, E.C., Borensztajn, S. & Javaux, E.J. (2019b) Early fungi from the Proterozoic era in Arctic Canada. Nature, v.570, pp.232–235.CrossRefGoogle Scholar
  29. Marshall, C.P., Javaux, E.J., Knoll, A.H. and Walter, M.R. (2005) Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: A new approach to Palaeobiology. Precambrian Res., v.138, pp.208–224.CrossRefGoogle Scholar
  30. Mukherjee, A. and Ray, R.K. (2010) An alternate view on the stratigraphic position of the similar to 1-Ga Sukhda Tuff vis-a-vis chronostratigraphy of the Precambrians of the central Indian Craton. Jour. Geol., v.118, pp.325–332.CrossRefGoogle Scholar
  31. Mukherjee, A., Ray, R.K., Tewari, D., Ingle, V.K., Sahoo, B.K. & Khan, M.W.Y., 2014. Revisiting the stratigraphy of the Mesoproterozoic Chhattisgarh Supergroup, Bastar craton, India based on subsurface lithoinformation. Jour. Earth System Sci., v.123, pp.617–632.CrossRefGoogle Scholar
  32. Nagovitsin, K. (2009) Tappania-bearing association of the Siberian Platform; biodiversity, stratigraphic position and geochronological constraints. Precambrian Res., v.173, pp.137–145.CrossRefGoogle Scholar
  33. Patranabis-Deb, S. and Chaudhuri, A.K. (2008) Sequence evolution in the eastern Chhattisgarh Basin; constraints on correlation and stratigraphic analysis. Palaeobotanist, v.57, pp.15–32.Google Scholar
  34. Prasad, B. and Asher, R. (2001) Acritarch biostratigraphy and lithostratigraphic classification of Proterozoic and lower Paleozoic sediments (pre-unconformity sequence) of Ganga Basin, India. Paleontographica Indica, v.5, pp.151.Google Scholar
  35. Prasad, B., Uniyal, S.N. and Asher, R. (2005) Organic-walled microfossils from the Proterozoic Vindhyan Supergroup of Son Valley, Madhya Pradesh, India. Palaeobotanist, v.54, pp.13–60.Google Scholar
  36. Ray, J.S., Martin, M.W., Veizer, J. and Bowring, S.A. (2002) U-Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India. Geology (Boulder), v.30, pp.131–134.CrossRefGoogle Scholar
  37. Schopf, J.W., Calça, C.P., Garcia, A.K., Kudryavtsev, A.B., Souza, P.A., Félix, C.M. and Fairchild, T.R. (2016) In situ confocal laser scanning microscopy and Raman spectroscopy of bisaccate pollen from the Irati Subgroup (Permian, Paraná Basin, Brazil): Comparison with acid-macerated specimens. Rev. Palaeobot. Palynol., v.233, pp.169–175.CrossRefGoogle Scholar
  38. Schopf, J.W. and Kudryavtsev, A.B. (2009) Confocal laser scanning microscopy and Raman imagery of ancient microscopic fossils. Precambrian Res., v.173, pp.39–49.CrossRefGoogle Scholar
  39. Schopf, J.W., Sergeev, V.N. and Kudryavtsev, A.B. (2015) A new approach to ancient microorganisms: taxonomy, paleoecology, and biostratigraphy of the Lower Cambrian Berkuta and Chulaktau microbiotas of South Kazakhstan. Jour. Paleont., v.89, pp.695–729.CrossRefGoogle Scholar
  40. Schopf, J.W., Tripathi, A.B. and Kudryavtsev, A.B., 2006. Three-dimensional confocal optical imagery of precambrian microscopic organisms. Astrobiology, v.6, pp.1–16.CrossRefGoogle Scholar
  41. Sergeev, V.N. (2009) The distribution of microfossil assemblages in Proterozoic rocks. Precambrian Res., v.173, pp.212–222.CrossRefGoogle Scholar
  42. Singh, V.K. and Sharma, M. (2014) Morphologically complex Organic-Walled Microfossils (OWM) from the Late Palaeoproterozoic — Early Mesoproterozoic Chitrakut Formation, Vindhyan Supergroup, Central India and their implications on the antiquity of eukaryotes. Jour. Palaeont. Soc. India, v.59, pp.89–102.Google Scholar
  43. Singh, V.K. and Sharma, M. (2016) Mesoproterozoic Organic-Walled Micro-fossils from the Chaporadih Formation, Chandarpur Group, Chhattisgarh Supergroup, Odisha India. Jour. Palaeont. Soc. India, v.61, pp.75–84.Google Scholar
  44. Tang, Q., Pang, K., Yuan, X., Wan, B. and Xiao, S. (2015) Organic-walled microfossils from the Tonian Gouhou Formation, Huaibei region, North China Craton, and their biostratigraphic implications. Precambrian Res., v.266, 296–318.CrossRefGoogle Scholar
  45. Timofeev, B.V. and Hermann, T.N. (1979) Precambrian microbiota of the Lakhanda Formation. In: Sokolov, B.S. (Ed.), Paleontology of the Precambrian and Early Cambrian, Nauka, Leningrad, pp.137–147. (In Russian).Google Scholar
  46. Xiao, S. (2013) Written in Stone: The Fossil Record of Early Eukaryotes. In: Trueba, G. and Montúfar, C. (Eds.), Evolution from the Galapagos: Two Centuries after Darwin. Springer New York, New York, NY, pp.107–124.CrossRefGoogle Scholar
  47. Xiao, S., Knoll, A.H., Kaufman, A.J., Yin, L. and Zhang, Y. (1997) Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Res., v.84, pp.197–220.CrossRefGoogle Scholar
  48. Yin, L. (1997) Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China. Rev. Palaeobot. Palynol., v.98, pp.15–25.CrossRefGoogle Scholar
  49. Yin, L., Changtai, N. and Kong, F.-F. (2018) A Review of Proterozoic Organic-walled Microfossils — Tappania and Its Biologic and Geologic Implication. Acta Palaeontol. Sinica, v.57, pp.147–156.Google Scholar

Copyright information

© GEOL. SOC. INDIA 2019

Authors and Affiliations

  • Veeru Kant Singh
    • 1
    Email author
  • Mukund Sharma
    • 1
  • Vladimir N. Sergeev
    • 2
  1. 1.Birbal Sahni Institute of PalaeosciencesLucknowIndia
  2. 2.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations