Advertisement

Journal of the Geological Society of India

, Volume 93, Issue 3, pp 343–350 | Cite as

Mineralogical Studies of Kerur Formation Badami Group, Kaladgi Basin, Karnataka

  • A. RamachandranEmail author
  • S. Srinivasalu
  • S. Ramasamy
  • S. Bhuvaneswari
  • D. Gnanaval
  • K. V. G. Krishna
Research Articles
  • 11 Downloads

Abstract

Heavy and clay mineral analysis is a significant tool to interpret the provenance and paleoclimate of sandstone in proterozoic intracratonic Kaladgi-Badami basin, southern India. The distributions of heavy minerals are more in lower conglomerate; at the depth of 162.35m, zircon is 9.01%, magnetite is 74.18% and ilmenite is 24.61%. The ZTR index is 97.02%. The lower part of the upper unit of core quartz arenite, at the depth of 70.55m shows the following distribution of heavy minerals; zircon 2.94%, magnetite 50.84% and ilmenite 35.71%. The ZTR index of the quartz arenite is 65.52%; moderately abundant heavy minerals are tourmaline, rutile, and garnet; less abundant mineral is zircon in the core. The clay deposits in the basal arenite unit starts from 187 to 171.45m. The X-ray diffraction patterns shows 75% of Illite at the depth of 187m and 181.4m, 40% of chlorite at the depth of 181.7m, 36.36% of monmorillonite and 25% of kaolinite at the depth of 183m but 36.36% at the depth of 177.1m. kaolinite peaks are identified only in two samples. The study reveals that intense weathering in humid climate was responsible for alteration of granitic source rocks in the formation of kaolinitic clays in an acidic environment. The ZTR index reflects that the Badami sediments have attained moderate to high mineralogical maturity. The inference made out of the assemblage of heavy minerals point out that the Badami sediments have been sourced mainly from granitic and metamorphic terrain with a broad drainage basin. In most sandstone and conglomerate, the average ZTR index is moderate but varies widely among samples; apparently local lithologic source area variations largely control these relatively unmodified heavy mineral assemblages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhattacharya, N. (1984) Clay mineral studies of Barail and Tipam Reservoir sand in Assam, Indis. Jour. Geol. Soc. India, v.25(2), pp.108–115.Google Scholar
  2. Biscay, P.E., (1965) Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull., v.76, pp.803–832.CrossRefGoogle Scholar
  3. Brown, G. and Brindley, G. W. (1980) X-ray diffraction procedures for clay mineral identification. In G. W. Brindley and G. Brown (Eds.), Crystal Structures of Clay Minerals and their X-ray ldentification, Mineralogical Society, London, pp.305–359.Google Scholar
  4. Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Heidelberg, pp.623.CrossRefGoogle Scholar
  5. Choudri, R.S. and Kalita, C.K. (1985) X-ray study of clay mineralogy of the Krol Formation of the Mussorie Hills, Kumaon Himalaya. Indian Jour. Earth. Sci., v.12, pp.239–249.Google Scholar
  6. Dickinson, W.R and Suczek, C.A. (1979) Plate tectonics and sandstone compositions. AAPG Bull., v.63, pp.2164–2182.Google Scholar
  7. Dickinson, W.R. (1982) Compositions of sandstones in circum-Pacific subduction zones and forearc basins: AAPG Bull., v.66, pp.121–137.Google Scholar
  8. Dickinson, W.R. (1985) Interpreting provenance relations from detrital modes of sandstones. In: Zuffa, G. (Ed.), Provenance of Arenites. D. Reidel Pub. Co., Dordrecht, pp.333–362.CrossRefGoogle Scholar
  9. Dunoyer De Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low grade metamorphiam. Sedimentol. v.15, pp.218–348.Google Scholar
  10. Eriksson, P.G., Martins-Neto, M.A., Nelson, D.R., Aspler L.B., Chiarenzelli, J.R., Catuneanu, O., Sarkar, S., Altermann, W. and Rautenbach, C.J. DE W. (2001) An introduction to Precambrian basins: their characteristics and genesis. Sediment. Geol., v.141-142, pp.1–35.CrossRefGoogle Scholar
  11. Feo-Codecido, G. (1956) Heavy mineral techniques and their application to Uenezuelan stratigraphy. AAP, v.40: pp.84–100.Google Scholar
  12. Folk, R.L. (1980) Petrology of sedimentary Rocks, Hamhill, Austin, Texas pp.183.Google Scholar
  13. Frey, M. (1970) The step from diagenesis to metamorphism in politic rocks during Alpine Orogeneis. Sedimentol., v.15, pp.261–279.CrossRefGoogle Scholar
  14. Galehouse, J.S (1971) Sedimentation analysis. In: Carver, R.E. (Ed.), Procedures in sedimentary petrology. pp.69–94 (Wiley Inter Science, New York).Google Scholar
  15. Garzanti, E., Vezzoli, G., Andò, S. and Castiglioni, G. (2001) Petrology of rifted-margin sand (Red Sea and Gulf of Aden, Yemen). Jour. Geol., v.109, pp.277–297.CrossRefGoogle Scholar
  16. Garzanti, E. and Andó, S. (2007) Heavy mineral concentration in modern sands: implications for provenance interpretation. In: Mange, M.A., Wright, D.T. (Eds.), Heavy Minerals in Use: Developments in Sedimentology, v.58, pp.517–545.CrossRefGoogle Scholar
  17. Gill, W.D., Khalaf, F.E. and Massoud, M.S. (1977) Clay minerals as an index of the degree of metamorphism of the carbonate and terrigenous rocks in the South Wales coalfield. Sedmentol., v.24, pp.675–691.CrossRefGoogle Scholar
  18. Govindarajulu, B.V. and Nagaraja, H.R. (1967) Authigenic feldspars from the lower Kaladgi arkoses of Jamkhandi, Mysore state. Jour. Sediment. Petrol., v.37, pp.707–709.CrossRefGoogle Scholar
  19. Graham, S.A., Ingersoll, R.V. and Dickinson, W.R. (1976) Common provenance for lithic grains in Carboniferous sandstones from Ouachita mountains and Black Warrior basin: Jour. Sediment. Petrol., v.46, pp.620–632.Google Scholar
  20. Graham, S.A., Hendrix, M.S., Wang, L.B. and Carroll, A.R. (1993) Collisional successor basins of western China: impact of tectonic inheritance on sand composition. Geol. Soc. Amer., Bull., v.105, pp.323–344.CrossRefGoogle Scholar
  21. Grim, R.E. (1951) The depositional environment of red and green shales: Jour. Sediment. Petrol., v.21, pp.226–232.Google Scholar
  22. Grim, R.E. (1968) Clay Mineralogy, 2nd Edition, McGraw Hill, New York, pp.560.Google Scholar
  23. Hallsworth, C.R., Morton, A.C., Claoué-Long, J., and Fanning, C.M. (2000) Carboniferous sand provenance in the Pennine Basin, UK: constraints from heavy mineral and detrital zircon age data. Sediment. Geol., v.137, pp.47–185.CrossRefGoogle Scholar
  24. Hardy, R. and Tucker, M (1988) X-ray powder diffraction of sediments. In Techniques in sedimentology (ed. Tucker, M), pp.191–228 (Blackwell Scientific Publications, Oxford).Google Scholar
  25. Hubert, J.F (1971) Analysis of heavy-mineral assemblages. In: Carver, R.E. (Ed.), Procedures in Sedimentary Petrology. Wiley-Interscience, New York, pp.453–478.Google Scholar
  26. Jayaprakash, A.V., Sundaram, V., Hans, S.K. and Mishra, R.N. (1987) Geology of the Kaladgi-Badami Basin. Purana Basins of Peninsular India (Middle to Late Proterozoic). Mem. Geol. Soc. India v.6, pp.201–226.Google Scholar
  27. Krynine, P.D. (1942b) Provenance versus mineral stability as a controlling factor in the composition of sediments (abs.). Geol. Soc. Amer. Bull., v.53, pp.1830–1831.Google Scholar
  28. Kubler, B. (1968) Evaluation quantitative du metamorphism par la cristallinite de I’illite. Bull. Centre REch. Pau, v.2, pp.385–397.Google Scholar
  29. Loi, A. and Dabard, M.P. (1997) Zircon typology and geochemistry in the paleogeographic reconstruction of the Late Ordovician of Sardinia (Italy). Sediment. Geol., v.112, pp.263–279.CrossRefGoogle Scholar
  30. Madhavaraju, J., Ramasamy, S. (2001) Clay mineral assemblages and rare earth element distribution in the sediments of Ariyalur Group, Tiruchirapalli District, Tamil Nadu - Implication for Paleoclimate. Jour. Geol. Soc. India, v.58, pp.69–77.Google Scholar
  31. Madhavaraju, J., Ramasamy, S., Alastair Ruffell And Mohan, S.P. (2002) Clay mineralogy of the Late Cretaceous and Early Tertiary successions of the Cauvery Basin (southeastern India): Implication for sediment source and Palaeoclimates at the K/T boundary. Cretaceous Res., v.23, pp.153–163.CrossRefGoogle Scholar
  32. Madhavaraju, J., Erik Ramírez-Montoya, E., Monreal, R., González-León, C.M., Pi-Puig, T., Espinoza-Maldonado, I.G., Grijalva-Noriega, F.J. (2016a) Paleoclimate, paleoweathering and paleoredox conditions of Lower Cretaceous shales from the Mural Limestone, Tuape section, northern Sonora, Mexico: Constraints from clay mineralogy and geochemistry. Revista Mexicana de Ciencias Geologicas, v.33, pp.34–48.Google Scholar
  33. Madhavaraju, J., Tom, M., Lee, Y.I., Balaram, V., Ramasamy, S., Carranza-Edwards, A., Ramachandran, A. (2016b) Provenance and tectonic settings of sands from Puerto Peñasco, Desemboque and Bahia Kino beaches, Gulf of California, Sonora, Mexico. Jour. South Amer.n Earth Sci., v.71, pp.262–275.CrossRefGoogle Scholar
  34. Madhavaraju, J., Pacheco-Olivas, S.A., Gonzalez-Leon, C.M., Espinoza-Maldonado, I.G., Sanchez-Medrano, P.A, Villanueva-Amadoz, U., Monreal, R., Pi-Puig, T., Ramirez-Montoya, E., Grijalva-Noriega, F.J. (2017) Clay Mineralogy and geochemistry of the Lower Cretaceous siliciclastic rocks of the Morita Formation, Sierra San José section, Sonora, Mexico. Jour. South Amer. Earth Sci., v.76, pp.397–411.CrossRefGoogle Scholar
  35. Millot, G. (1970) Geology of clays, Springer. Berlin, pp.499.CrossRefGoogle Scholar
  36. Morton, A.C (1985) Heavy minerals in provenance studies. In: Zuffa, G.G. (Ed.), Provenance of Arenites. Reidel Publ., Dordrecht, pp.249–277.CrossRefGoogle Scholar
  37. Morton, A.C. and Hallsworth, C.R. (1994) Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol., v.90, pp.241–256.CrossRefGoogle Scholar
  38. Morton, A.C. (1985) Heavy mineral in provenance studies. In: “Provenance of Arenites”, Zuffa B.B. (Ed.), D. Rediel Publication Company, New Jersey, pp.249–277.CrossRefGoogle Scholar
  39. Morton, A. C. and Hallsworth, C. R. (1999). Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol., v.124, pp.3–29.CrossRefGoogle Scholar
  40. Morton, A.C. and Hallsworth, C.R. (2007) Stability of detrital heavy minerals during burial diagenesis. In: Mange, M. and Wright, D.K. (Eds.), Heavy Minerals in Use. Developments in Sedimentology, v.58, pp.215–245.CrossRefGoogle Scholar
  41. Muller, G. (1967) Methods in sedimentary petrology. Hafner Publishing Company, New York, 281p.Google Scholar
  42. Nagaraju, M.N. and Gorikhan, R.A. (2002) Annual report for the field season 2001–02, Kaladgi-Badami Basin Investigation. Unpublished AMD report, 19p.Google Scholar
  43. Nanda, L.K., Krishna, K.V.G., Gajapathi Rao, R., Nagaraju, M.N., Prakash, B.G., Vidyasagar, D., Tippeswamy, S., Balasubramanian, S., Dey, S. and Kusum Prakash (2006) Brief annual report for the field season 2005–06, Kaladgi-Badami Basin Investigations. Unpublished AMD report, 54p.Google Scholar
  44. Narayana, A.C. and Suresh Kumar, K.N. (1994) Sedimentological and clay mineral studies of Kumbla-Shiriya Estuary, West Coast of India. Jour. Geol. Soc. India, v.44, pp.185–192.Google Scholar
  45. Nechaev, V.P. and Isohording, W.C. (1993) Heavy mineral assemblages of continental margins as indicators of plate tectonics environment. Jour. Sediment. Petrol., v.63, pp.1110–1117.Google Scholar
  46. Pandarinath, K., Prasad, S. and Gupta, S.K. (1999) A 75 Ka Record of Paleoclimatic Changes Inferred from Crystallinity of Illite from Nal Sarovar, Western India. Jour. Geol. Soc. India, v.54, pp.515–522.Google Scholar
  47. Pettijohn, F. J. (1949) Sedimentary rocks. Harper & Brothers, New York, 526p.Google Scholar
  48. Pettijohn, F.J., Potter, P.E. and Siever, R. (1987) Sand and Sandstone, 2nd ed. Springer, New York. 553p.CrossRefGoogle Scholar
  49. Pettijohn, FJ. (1975) Sedimentary Rocks (3rd edition). New York: Harper and Row, 628 p.Google Scholar
  50. Pupin, J.P. (1980) Zircon and granite petrology. Contrib. Mineral. Petrol., v.73, pp.207–220.CrossRefGoogle Scholar
  51. Purandra, B.K. (1993) Texture and mineralogy of Periyar river (South West Coast of India) sediments. Indian Jour. Mar. Sci., v.2, pp.78–80.Google Scholar
  52. Radhakrishna, B.P. (1987) Introduction: Purana Basins of Peninsular India. Mem. Geol. Soc. India, no.6, pp.1–15.Google Scholar
  53. Rajamanickam, G.V. (1983) Geological investigation of offshore heavy mineral placers of Konkan Coast. Maharashtra India. Ph.D. Thesis, Indian School of Mines, Dhanbad, India., pp.258.Google Scholar
  54. Ramachandran, A, Madhavaraju, J, Ramasamy, S Yong Il Lee, Rao, S, David, L. C And Velmurugan, K (2016) Geochemistry of Proterozoic clastic rocks of the Kerur Formation of Kaladgi-Badami Basin, North Karnataka, South India: implications for paleoweathering and provenance. Tur. Jour. Earth Sci. 25. pp. 126–144.CrossRefGoogle Scholar
  55. Rice, C. M. (1948) Dictionary of geological terms: Edwards Brothers, Inc., Ann Arbor, Michigan, 461 p.Google Scholar
  56. Rittenhouse, G (1943) Transportation and deposition of heavy minerals: Bull. Geol. Soc. America, v.54, p.1725–1780.CrossRefGoogle Scholar
  57. Ruffell, A., Mckinley, J.M., Worden, R.H. (2002) Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe. Phil. T. Roy. Soc. A 360, pp.675–693.CrossRefGoogle Scholar
  58. Schäfer J, and Dörr. W. (1997) Heavy-mineral analysis of detrital zircons: a new approach to provenance study (Saxothuringian flysch, Germany). Jour. Sediment. Res., v.67, pp.451–461.Google Scholar
  59. Sheldon, N.D. and Tabor, N.J. (2009) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci. Rev., v.95, pp.1–52.CrossRefGoogle Scholar
  60. Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments. Earth Sci. Rev., v.21, pp.251–293.CrossRefGoogle Scholar
  61. Singh, I.B. (1980) Precambrian sedimentary systems of India. Precambrian Res., v.12, pp.411–436.CrossRefGoogle Scholar
  62. Smithson, F. (1950) The mineralogy of arenaceous deposits: Science Progress, v. 38, pp.10–21.Google Scholar
  63. Stalder, P.J. (1979) Organic and inorganic metamorphism in the Taveyannaz sandstone of Swiss Alps and equivalent sandstones in France and Italy. Jour. Sed. Petrol., v.49, pp.463–482.Google Scholar
  64. Sukanta Dey, Rai, A.K. and Anjan Chaki (2008) Widespread Arkose along the northern margin of the proterozoic Kaladgi Basin, Karnataka: Product of uplifted granitic source or K-metasomatism?. Jour. Geol. Soc. India, v.71, pp.79–88.Google Scholar
  65. Thiry, M. (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Sci. Rev., v.49, pp.201–221.CrossRefGoogle Scholar
  66. Van Andel, T. H. (1959) Reflections on the interpretation of heavy mineral analyses. Jour. Sediment. Petrol., v.29, pp.153–163.Google Scholar
  67. Vavra, G., (1993) A guide to quantitative morphology of accessory zircon. Chem. Geol., v.110, pp.15–28.CrossRefGoogle Scholar
  68. Viswanataiah, M.N. and Sreedhara Murthy, T.R. (1977) Potash feldspathization of conglomerate and subfeldsarenites of Kaladgi Group, Bilgi, Bijapur District, Karnataka, India. Indian Mineral., v.18, pp. 85–93.Google Scholar
  69. Von Eynatten, H. and Gaupp, R., (1999) Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sediment. Geol., v.124, pp.81–111.CrossRefGoogle Scholar
  70. Weaver, C.E. (1960) The effects of geologic significance of potassium fixation by expandable clay minerals derived from muscovite, biotite, chlorite and volcanic materials. Amer. Mineralogist, v. 43, pp. 839–869.Google Scholar
  71. Weaver, C.E. (1989) Clays, Muds, and Shales. Elsevier, Amsterdam, 819p.Google Scholar
  72. Whitehouse, V.G. and Mccarter, R.S. (1958) Diagenetic modification of clay mineral types in the artificial sea water. Clays and Clay Minerals, 5th Nat. Conf., Pergamon Press, Oxford, pp.81–119.Google Scholar

Copyright information

© Geological Society of India 2019

Authors and Affiliations

  • A. Ramachandran
    • 1
    Email author
  • S. Srinivasalu
    • 2
  • S. Ramasamy
    • 3
  • S. Bhuvaneswari
    • 3
  • D. Gnanaval
    • 4
  • K. V. G. Krishna
    • 5
  1. 1.Department of GeologyAnna University, GuindyChennaiIndia
  2. 2.Institute for Ocean ManagementAnna UniversityGuindy, ChennaiIndia
  3. 3.Department of GeologySchool of Earth and Atmospheric Sciences, University of Madras, Guindy CampusChennaiIndia
  4. 4.Department of Geology & MiningThiru.Vi. Ka. Industrial EstateGuindy, ChennaiIndia
  5. 5.Atomic Minerals Directorate for Exploration & ResearchHyderabadIndia

Personalised recommendations