Advertisement

Journal of the Geological Society of India

, Volume 93, Issue 3, pp 285–292 | Cite as

Adsorption of Hexavalent Chromium using Natural Goethite: Isotherm, Thermodynamic and Kinetic Study

  • Shanti Kar
  • Sk. Md. EqueenuddinEmail author
Research Articles
  • 15 Downloads

Abstract

This paper examines the potential of natural goethite as an adsorbent for removing Cr(VI) from the aqueous solution through adsorption isotherms, thermodynamics and kinetics study. The study is based on the batch experiments as a function of initial Cr(VI) concentrations, contact time, pH and temperature at fixed solid/solution ratio. The pH has pronounced effect on process of removal and removal is higher in lower pH range, maximum (99.14 %) being at pH 2. The adsorption of Cr(VI) onto goethite is endothermic in nature and therefore, higher temperature favours the uptake. The adsorbent capacity was determined using Langmuir, Freundlich, Dubinin–Radushkevich and Temkin adsorption isotherm models. The results showed that the adsorption fits best to the Langmuir isotherm model with the adsorption capacity 0.727 mg/g. Pseudo-first-order kinetic, pseudo-second-order kinetic and intraparticle diffusion were used to analyze the adsorption kinetic at different initial Cr(VI) concentrations. The kinetic study indicated that the pseudosecond order model explained the adsorption mechanism and intra-particle diffusion was found to be the rate-controlling step. The negative values of Gibb’s free energy explained that the adsorption was feasible and spontaneous.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya, J., Sahu, J.N., Sahoo, B.K., Mohanty C.R. and Meikap, B.C. (2009) Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. Chem. Engg. Jour., v.150, pp.25–39.CrossRefGoogle Scholar
  2. Ajouyed, O., Hurel, C., Ammari, M., Allal, L. B. and Marmier, N. (2010) Sorption of Cr(VI) onto natural iron and aluminum (oxy)hydroxides: Effects of pH, ionic strength and initial concentration. Jour. Hazard. Mater., v.174, pp.616–622.CrossRefGoogle Scholar
  3. Akar, S.T., Yetimoglu, Y. and Gedikbey, T. (2009) Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification. Desalination, v.244, pp.97–108.CrossRefGoogle Scholar
  4. Akçay, M. (2006) Characterization and adsorption properties of tetrabutyl ammonium montmorillonite (TBAM) clay: Thermodynamic and kinetic calculations. Jour. Colloid Interface Sci., v.296, pp.16–21.CrossRefGoogle Scholar
  5. Albadarin, A. B., Mangwandi, C., Al-Muhtaseb, A., Walker, G.M., Allen, S.J. and Ahmad, M.N.M. (2012) Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem. Engg. Jour., v.179, pp.193–202.CrossRefGoogle Scholar
  6. Anupama, K., Dutta, S., Bhattacharjee, C. and Datta, S. (2011) Adsorptive removal of chromium (VI) from aqueous solution over powdered activated carbon: Optimisation through response surface methodology. Chem. Engg. Jour., v.173, pp.135–143.CrossRefGoogle Scholar
  7. APHA (2012) Standard Methods for Examination of water and wastewater. American Public Health Association, Washington, 22nd Edition, pp.1360.Google Scholar
  8. Baig, S.A., Wang, Q., Wang, Z., Zhu, J., Lou, Z, Sheng, T. and Xu, X. (2014) Hexavalent chromium removal from solutions: Surface efficacy and characterizations of three iron containing minerals. Clean Soil Air Water, v.42, pp.1409–1414.CrossRefGoogle Scholar
  9. Baig, S.A., Wang, Q., Lv, X. and Xu, X. (2013) Removal of hexavalent chromium by limonite in aqueous solutions. Hydrometallurgy, v.138, pp.33–39.CrossRefGoogle Scholar
  10. Baral, S. S., Das, N., Chaudhury, G.R. and Das, S.N. (2009) A preliminary study on the adsorptive removal of Cr(VI) using seaweed, Hydrillaverticillata. Jour. Hazard. Mater., v.171, pp.358–369.CrossRefGoogle Scholar
  11. Baral, S.S., Das, S.N., Rath, P. and Chaudhury, G.R. (2007) Chromium(VI) removal by calcined bauxite. Biochem. Engg. Jour., v.34, pp.69–75.CrossRefGoogle Scholar
  12. Brdar, M., Šæiban, M., Takaèi, A. and Došenoviæ, T. (2012) Comparison of two and three parameters adsorption isotherm for Cr(VI) onto Kraft lignin. Chem. Engg. Jour., v.183, pp.108–111.CrossRefGoogle Scholar
  13. Buerge, I. J. and Hug, S. J. (1999) Influence of mineral surfaces on chromium (VI) reduction by iron(II). Environ. Sci. Tech., v.33, pp.4285–4291.CrossRefGoogle Scholar
  14. Choppala, G., Bolan, N. and Seshadri, B. (2013) Chemodynamics of chromium reduction in soils: Implications to bioavailability. Jour. Hazard. Mater., v.261, pp.718–724.CrossRefGoogle Scholar
  15. Chowdhury, S.R. and Yanful, E.K. (2010) Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal. Jour. Environ. Managmt., v.91, pp.2238–2247.CrossRefGoogle Scholar
  16. Doke, K., Khan, E. and Gaikwad, V. (2013) Diffusion mechanisms of biosorption of Cr(VI) onto powdered cotton stalk. Jour. Dispersion Sci. Technol., v.34, pp.1347–1355.CrossRefGoogle Scholar
  17. Dubey, S.P. and Gopal, K. (2007) Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: A comparative study. Jour. Hazard. Mater., v.145, pp.465–470.CrossRefGoogle Scholar
  18. EPA (1990) Environmental pollution control alternatives: Drinking water treatment for small communities. Technology Transfer, EPA/625/5-90/025.Google Scholar
  19. Erdem M., Gur F. and Tümen F. (2004) Cr(VI) reduction in aqueous solutions by siderite. Jour. Hazard. Mater., v.113, pp.217–222.CrossRefGoogle Scholar
  20. Fendorf, S.E. (1995) Surface reactions of chromium in soils and waters. Geoderma, v.67, pp.55–71.CrossRefGoogle Scholar
  21. Fritzen, M.B., Souza, A.J., Silva, T.A.G., Souza, L., Nome, R.A., Fiedler, H. D. and Nome, F. (2006) Distribution of hexavalent Cr species across the clay mineral surface–water interface. Jour. Colloid Interface Sci., v.296, pp.465–471.CrossRefGoogle Scholar
  22. Granados-Correa, F. and Jiménez-Becerril, J. (2009) Chromium (VI) adsorption on boehmite. Jour. Hazard. Mater., v.162, pp.1178–1184.CrossRefGoogle Scholar
  23. Hu, J., Chen, C., Zhu, X. and Wang, X. (2009) Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. Jour. Hazard. Mater., v.162, pp.1542–1550.CrossRefGoogle Scholar
  24. Hyder, A.H.M.G., Begum, S.A. and Egiebor, N.O. (2014) Adsorption isotherm and kinetic studies of hexavalent chromium removal from aqueous solution onto bone char. Jour. Environ. Chem. Engg., v.3, pp.1329–1336.CrossRefGoogle Scholar
  25. Jung, C., Heo, J., Han, J., Her, N., Lee, S., Oh, J., Ryu, J. and Yoon, Y. (2013) Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Sep. Purif. Techl., v.106, pp.63–71.CrossRefGoogle Scholar
  26. Khezami, L. and Capart, R. (2005) Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies. Jour. Hazard. Mater., v.123, pp.223–231.CrossRefGoogle Scholar
  27. Kim, C., Lan, Y. and Deng, B. (2007) Kinetic study of hexavalent Cr(VI) reduction by hydrogen sulfide through goethite surface catalytic reaction. Geochem. Jour., v.41, pp.397–405.CrossRefGoogle Scholar
  28. Khan, S.A., Rehman, R.U. and Khan, M.A. (1995) Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. Waste Managmt., v.15, pp.271–282.CrossRefGoogle Scholar
  29. Korus, I. and Loska, K. (2009) Removal of Cr(III) and Cr(VI) ions from aqueous solutions by means of polyelectrolyte-enhanced ultrafiltration. Desalination, v.247, pp.390–395.CrossRefGoogle Scholar
  30. Kulkarni, P. S., Kalyani, V., and Mahajani, V. V. (2007) Removal of hexavalent chromium by membrane-based hybrid processes. Ind. Engg. Chem. Res., v.46, pp.8176–8182.CrossRefGoogle Scholar
  31. Lazaridis, N.K., Bakoyannakis, D.N. and Deliyanni, E.A. (2005) Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganéite. Chemosphere, v.58, pp.65–73.CrossRefGoogle Scholar
  32. Malkoc, E. and Nuhoglu, Y. (2007) Determination of kinetic and equilibrium parameters of the batch adsorption of Cr(VI) onto waste acorn of Quercus ithaburensis. Chem. Eng. Process., v.46, pp.1020–1029.CrossRefGoogle Scholar
  33. Mitra, S., Thakur L.S., Rathore, V.K. and Mondal, P. (2016) Removal of Pb(II) and Cr(VI) by laterite soil from synthetic waste water: single and bicomponent adsorption approach. Desalination Water Treat., v.57, pp.18406–18416.CrossRefGoogle Scholar
  34. Mohapatra, B.K., Jena, S., Mahanta, K. and Mishra, P. (2007) Goethite morphology and composition in Banded Iron Formation, Orissa, India. Resour. Geol., v.58(3), pp.325–332.CrossRefGoogle Scholar
  35. Mor, S., Ravindra, K. and Bishnoi, N.R. (2007) Adsorption of chromium from aqueous solution by activated alumina and activated charcoal. Bioresour. Tech., v.98, pp.954–957.CrossRefGoogle Scholar
  36. Namasivayam, C. and Sureshkumar, M.V. (2008) Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour. Tech., v.99, pp.2218–2225.CrossRefGoogle Scholar
  37. Namasivayam, C. and Yamuna, R.T. (1995) Adsorption of chromium (VI) by a low-cost adsorbent: biogas residual slurry. Chemosphere, v.30, pp.561–578.CrossRefGoogle Scholar
  38. Nemr, A. E., Khaled, A., Abdelwahab, O. and El-Sikaily, A. (2008) Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. Jour. Hazard. Mater., v.152, pp.263–275.CrossRefGoogle Scholar
  39. Olu-Owolabi, B. I., Diagboya, P. N. and Adebowale, K. O. (2014) Evaluation of pyrene sorption-desorption on tropical soils. Jour. Environ. Managmt., v.137, pp.1–9.CrossRefGoogle Scholar
  40. Panda, M., Bhowal, A. and Datta, S. (2011) Removal of hexavalent chromium by biosorption process in rotating packed bed. Environ. Sci. Tech., v.45, pp.8460–8466.CrossRefGoogle Scholar
  41. Qiu, B., Xu, C., Sun, D., Wang, Q., Gu, H., Zhang, X, Weeks, B. L., Hopper, J., Ho, T. C., Guo, Z. and Wei, S. (2015) Polyaniline coating with various substrates for hexavalent chromium removal. Appl. Surf. Sci., v.334, pp.7–14.CrossRefGoogle Scholar
  42. Qurie, M., Khamis, M., Manassra, A., Ayyad, I., Nir, S., Scrano, L., Bufo, S.A. and Karaman, R. (2013) Removal of Cr(VI) from aqueous environments using micelle-clay. Sci. World Jour., v.942703, pp.7.Google Scholar
  43. Rad, S.A.M., Mirbagheri, S.A. and Mohammadi, T. (2009) Using reverse osmosis membrane for chromium removal from aqueous solution. Int. Jour. Chem. Mol. Nucl. Mater. Metall. Engg., v.3, pp.9.Google Scholar
  44. Rai, D., Eary, L.E. and Zachara, J.M. (1989) Environmental chemistry of chromium. Sci. Total Environ., v.86, pp.15–23.CrossRefGoogle Scholar
  45. Ramos-Ramírez, E., Ortega, N.L. G., Soto, C.A.C. and Gutiérrez, M.T.O. (2009) Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol–gel hydrotalcite-like compounds. Jour. Hazard. Mater., v.172, pp.1527–1531.CrossRefGoogle Scholar
  46. Rao, F., Song, S. and Lopez-Valdivieso, A. (2012) Specific adsorption of chromium species on kaolinite surface. Miner. Process. Extr. Metall. Rev., v.33, pp.180–189.CrossRefGoogle Scholar
  47. Selen, V., Özer, D. and Özer, A. (2014) A study on the removal of Cr(VI) ions by sesame (sesamumindicum) stems dehydrated with sulfuric acid. Arab. Jour. Sci. Engg., v.39, pp.5895–5904.CrossRefGoogle Scholar
  48. Sharma, Y.C. (2001) Effect of temperature on interfacial adsorption of Cr(VI) on wollastonite. Jour. Colloid Interface Sci., v.233, pp.265–270.CrossRefGoogle Scholar
  49. Singh, D.B., Rupainwar, D.C. and Prasad, G. (1992) Studies on the removal of Cr(VI) from wastewater by feldspar. Jour. Chem. Tech. Biotechnol., v.53, pp.127–131.CrossRefGoogle Scholar
  50. Shi, T., Wang, Z., Liu, Y., Jia, S. and Changming, D. (2009) Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. Jour. Hazard. Mater., v.161, pp.900–906.CrossRefGoogle Scholar
  51. Singha, B., Naiya, T. K., Bhattacharya, A. K. and Das, S.K. (2011) Cr(VI) ions removal from aqueous solutions using natural adsorbents—FTIR studies. Jour. Environ. Prot., v.2, pp.729–735.CrossRefGoogle Scholar
  52. Song, X. and Wu, Y. (2014) Simultaneous adsorption of chromium (VI) and phosphate by calcined Mg-Al-CO3 layered double hydroxides. Bull. Korean Chem. Soc., v.35, pp.1817–1824.CrossRefGoogle Scholar
  53. Turan, M.D. and Altundogan, H.S. (2014) A study on Cr(VI) reduction from aqueous solutions from bauxite. Jour. Cent. South Univ., v.21, pp.1961–1967.CrossRefGoogle Scholar
  54. Wang, W., Li, M. and Zeng, Q. (2012) Thermodynamics of Cr(VI) adsorption on strong alkaline anion exchange fiber. Trans. Nonferrous Met. Soc. China, v.22, pp.2831–2839.CrossRefGoogle Scholar
  55. Weng, C., Sharma, Y.C. and Chu, S. (2008) Adsorption of Cr(VI) from aqueous solutions by spent activated clay. Jour. Hazard. Mater., v.155, pp.65–75.CrossRefGoogle Scholar
  56. Weng, C.H., Wang, J.H. and Huang, C.P. (1997) Adsorption of Cr(VI) onto TiO2 from dilute aqueous solutions. Wat. Sci. Tech., v.35, pp.55–62.CrossRefGoogle Scholar
  57. Wu, S., Lu, J., Ding, Z., Li, N., Fu, F. and Tang, B. (2016) Cr(VI) removal by mesoporous FeOOH polymorphs:performance and mechanism. RSC Adv., v.6, pp.82118–82130.CrossRefGoogle Scholar
  58. Xiaohong, Y., Lijun, Z., Baiwei, G. and Shouyang, H. (2009) A study on the adsorption of chromium on laterite from Guizhou Province, China. Chin. Jour. Geochem., v.28, pp.220–226.CrossRefGoogle Scholar
  59. Yang, C. and Kravets, G. (2000) Removal of chromium from abrasive blast media by leaching and electrochemical precipitation. Jour. Air Waste Manage. Assoc., v.50, pp.536–542.CrossRefGoogle Scholar
  60. Zachara, J.M., Cowan, C.E., Schmidt, R.L. and Ainsworth, C.C. (1988) Chromate adsorption by kaolinite. Clays Clay Miner., v.36, pp.317–326.CrossRefGoogle Scholar
  61. Zachara, J.M., Girvin, D.C., Schmidt, R.L. and Resch, C.T. (1987) Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions. Environ. Sci. Tech., v.21, pp.589–594.CrossRefGoogle Scholar
  62. Zhao, Y., Shen, H., Pan, S., Hu, M. and Xia, Q. (2010) Preparation and characterization of amino-functionalized nano-Fe3O4 magnetic polymer adsorbents for removal of chromium(VI) ions. Jour. Mater. Sci., v.45, pp.5291–5301.CrossRefGoogle Scholar
  63. Zhao, Y., Yang, S., Ding, D., Chen, J., Yang, Y., Lei, Z., Feng, C. and Zhang, Z. (2013) Effective adsorption of Cr (VI) from aqueous solution using natural Akadama clay. Jour. Colloid Interface Sci., v.395, pp.198–204.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2019

Authors and Affiliations

  1. 1.Department of Mining EngineeringNational Institute of TechnologyRourkelaIndia
  2. 2.Department of Earth and Atmospheric SciencesNational Institute of TechnologyRourkelaIndia

Personalised recommendations