Advertisement

Journal of the Geological Society of India

, Volume 93, Issue 3, pp 269–277 | Cite as

Thermodynamic Modelling and Experimental Validation of CO2 Mineral Sequestration in Mandla Basalt of the Eastern Deccan Volcanic Province, India

  • Amit Kumar
  • J. P. ShrivastavaEmail author
Research Articles
  • 15 Downloads

Abstract

Deccan basalt contains primary silicates rich in Ca, Mg, and Fe ions, suitable for CO2 sequestration. Previous, basalt-water-CO2 interaction studies were focused on other than Deccan basalt types. However, such studies on the Deccan basalt are rare. Thus, present basalt-CO2 water saturated interaction modelling under hydrothermal-like conditions was carried out on the Deccan basalt of the Mandla area to understand apposite pCO2 and time parameters. Modelling results were further validated by experiments run in a laboratory time framework. Present results show negative entropy (ΔS) and enthalpy (ΔfH) that suggest feasibility of plagioclase, pyroxene and magnetite dissolution. Obtained negative Gibb’s free energy (ΔfG), ΔfH and ΔS values for calcite, dolomite and magnesite indicate spontaneous reaction, whereas, positive ΔfG and negative ΔfH and ΔS values of the siderite suggest non-spontaneous and opposing reactions. Calcite is the first carbonate mineral to form, but, at a faster rate. Magnetite dissolution begins after a time lag (not initiated along with the plagioclase and pyroxene).

X-ray Powder Diffraction results of post-experiment residues revealed formation of calcite, aragonite, ankerite, huntite, siderite, smectite, chlorite, smectite/chlorite mixed layers and chabazite. Scanning electron microscopic images show tiny calcite crystal growth over the larger calcite crystal and incipient-disordered calcite with imperfections on crystal faces.

Thus, basalt carbonation is mainly controlled by time, but temperature, pCO2 and pH played sub-ordinate role. Largely, thermodynamic models do not agree well with the experimental results as numerical models indicate larger carbonate growth. Additionally, transition state theory based models work well to predict dissolution rates for most of the minerals, but, they overpredict growth of the secondary minerals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12594_2019_1173_MOESM1_ESM.pdf (789 kb)
Thermodynamic Modelling and Experimental Validation of CO2 Mineral Sequestration in Mandla Basalt of the Eastern Deccan Volcanic Province, India

References

  1. Bachu, S. and Adams, J.J. (2003) Sequestration of CO2 in geological media in response to climate change-capacity of deep saline aquifers to sequester CO2 in solution. Ener. Conv. and Manag., v.44, pp.3151–3175.CrossRefGoogle Scholar
  2. Biscay, P.E. (1964) Distinction between kaolinite and chlorite in recent sediments by x-ray diffraction. American Mineralogist, v.49, pp.1281–1289.Google Scholar
  3. Biscay, P.E. (1965) Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull., v.76, pp.803–832.CrossRefGoogle Scholar
  4. Brady, P.V. and Gislason, S.R. (1997) Seafloor weathering controls on atmospheric CO2 and global climate. Geochim. Cosmochim. Acta, v.61(5), pp.965–973.CrossRefGoogle Scholar
  5. Brindley, G.W. and Brown, G. (1985) Crystal structures of clay minerals and their X-ray identification. Mineral. Soc. London, Monograph, pp.5.Google Scholar
  6. Broecker, W.S. (2008) CO2 capture and storage: possibilities and perspectives. Elements, v.4, pp.295–297.Google Scholar
  7. Davis, K.J., Dove, P.M., Wasylenk, L.E. and De Yoreo, J.J. (2004) Morphological consequences of differential Mg2+ incorporation at structural distinct steps on calcite. American Mineralogist, v.89, pp.714–720.CrossRefGoogle Scholar
  8. Galeczka, I., Wolff-Boenisch, D., Oelkers, E.H. and Gíslason, S.R. (2014) An experimental study of basaltic glass-H2O-CO2 interaction at 22 and 50 ºC: Implications for subsurface storage of CO2. Geochim. Cosmochim. Acta, v.126, pp.123–145.CrossRefGoogle Scholar
  9. Gislason, S.R. and Oelkers, E. (2003) Mechanism, rates, and consequences of basaltic glass dissolution; II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochim. Cosmochim. Acta, v.67, pp.3817–3832.Google Scholar
  10. Gislason, S.R., Broecker, W.S., Oelkers, E.H., Gunnlaugsson, E., Sigurdardottir, Stefánsson, A., Wolff-Boenisch, D., Matter, J.M., Stute, M., Axelsson, G. (2009) The Carbfix project: Minerals CO2 sequestration into basalt. Geochim. Cosmochim. Acta, v.73, pp. A440.Google Scholar
  11. Gislason, S.R., Wolff-Boenisch, D., Stefánsson, A., Oelkers, E.H., Gunnlaugsson, E., Sigurdardottir, H., Sigfusson, B., Broecker, W.S., Matter, J.M., Stute, M., Axelsson, G., and Fridriksson, T. (2010a) Mineral sequestration of carbon dioxide in basalt: a pre-injection overview of the CarbFix project. Internat. Jour. Greenhouse Gas Control, v.4, pp.537–545.CrossRefGoogle Scholar
  12. Gislason, S.R., Wolff-Boenisch, D., Stefánsson, A., Alfredsson, H., Oelkers, E.H., Gunnlaugsson, E., Sigurdardottir, H., Sigfusson, B., Aradottir, E.S.P., Broecker, W.S., Matter, J.M., Stute, M. and Axelsson, G. (2010b) Mineral sequestration of CO2 in basalt-The Carbfix project. Geochim. Cosmochim.Acta, v.74(2), pp. A336.Google Scholar
  13. Gudbrandsson, S., Wolff-Boenisch, D., Gíslason, S.R. and Oelkers, E.H. (2011) An experimental study of crystalline basalt dissolution from 2 < pH < 11 and temperatures from 5 to 75°C. Geochim. Cosmochim. Acta, v.75, pp.5496–5509.CrossRefGoogle Scholar
  14. Gysi, A.P. and Stefánsson, A. (2008) Numerical modelling of CO2-waterbasalt interaction. Mineral. Magz., v.72(1), pp. 55–59.CrossRefGoogle Scholar
  15. Gysi, A.P. and Stefánsson, A. (2011) CO2-water-basalt interaction. Numerical simulation of low temperature CO2 sequestration into basalts. Geochim. Cosmochim. Acta, v.75, pp.4728–4751.Google Scholar
  16. Gysi, A.P. and Stefánsson, A. (2012a) CO2-water-basalt interaction. Low temperature experiments and implications for CO2 sequestration into basalts. Geochim. Cosmochim. Acta, v.81, pp.129–152.Google Scholar
  17. Gysi, A.P. and Stefánsson, A. (2012b) Mineralogical aspects of CO2 sequestration during hydrothermal basalt alteration–An experimental study at 75 to 250 °C and elevated pCO2. Chemical Geol., v.306-307, pp.146–159.CrossRefGoogle Scholar
  18. Hellevang, H., Aagaard, P. (2013) Can the long-term potential for carbonatization and safe long-term CO2 storage in sedimentary formations be predicted?. Appld. Geochem., v.39, pp.108–118.CrossRefGoogle Scholar
  19. Hellevang, H., Haile, B.G. and Tetteh, A. (2017) Experimental study to better understand factors affecting the CO2 mineral trapping potential of basalt. Greenhouse Gases. Science and Technology, v.7, pp.143–157. DOI: 10.1002/ghg.CrossRefGoogle Scholar
  20. Hitchon, B. ed. (1996) Aquifer disposal of carbon dioxide: hydrodynamic and mineral trapping - proof of concept: Alberta, Canada, Geoscience Publication Ltd, pp.165.Google Scholar
  21. Holland, T.J. B. and Powell, R. (1998) An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, v.16, pp.309–343.CrossRefGoogle Scholar
  22. Johnson, J.W., Oelkers, E.H. and Helgeson, H.C. (1992) SUPCRT92: a software package for calculating the standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species and Reactions from 1–5000 bar and 0–10000C. Computers Geoscience, v.18, pp.889–947.CrossRefGoogle Scholar
  23. Kanakiya, S., Ludmila, A., Esteban, L., Rowe, M. C. and Shane, P. (2017) Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid. Jour. Geophys. Res.: Solid Earth, v.122(6), pp.4312–4327. doi:10.1002/2017JB014019.CrossRefGoogle Scholar
  24. Kashyap, M., Shrivastava, J. P. and Kumar, R. (2010) Occurrence of small scale inflated pahoehoe lava flows in Mandla Lobe of the Eastern Deccan Volcanic Province. Curr. Sci., v.98, pp.72–76.Google Scholar
  25. Li, X., Kind, R., Yuan, X., Wolbern, I. and Hanka, W. (2004) Rejuvenation of the lithosphere by the Hawaiian plume, Nature, v.427, pp.827–829.CrossRefGoogle Scholar
  26. Marini, L. (2007) Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics, and Reaction Path Modeling: Elsevier, Amsterdam, v.11.Google Scholar
  27. Matter, J. M., Broecker, W.S., Stute, M., Gislason, S.R., Oelkers, E.H., Stefánsson, A., Wolff-Boenisch, D., Gunnlaugsson, E., Axelsson, G. and Björnsson, G. (2009) Permanent Carbon Dioxide Storage into Basalt: The CarbFix Pilot Project, Iceland. Energy Procedia, v.1(1), pp. 3641–3646.CrossRefGoogle Scholar
  28. Matter, J.M., Broecker, W.S., Gislason, S.R., Gunnlaugsson, E., Oelkers, E.H., Stute, M., Sigurdardóttir, H., Stefánsson, A., Alfreõssn, H.A., Aradóttir, E.S., Axelsson, G., Sigfússon, B. and Wolff-Boenisch, D. (2011) The CarbFix Pilot Project-Storing carbon dioxide in basalt. Energy Procedia, v.4, pp.5579–5585.CrossRefGoogle Scholar
  29. Matter, J.M., Stute, M., Snæbjörnsdottir S.Ó., Oelkers, E.H., Gislason, S.R., Aradottir, E.S., Sigfusson, B., Gunnarsson, I., Sigurdardottir, H., Gunnlaugsson, E., Axelsson, G., Alfredsson, H.A., Wolff-Boenisch, D., Mesfin K., Taya, D.F.d.l.R., Hall, J., Dideriksen, K. and Broecker W.S. (2016) Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, v. 352(6291), pp.1312–1314.CrossRefGoogle Scholar
  30. McGrail, B.P., Schaef, H.T., Ho, A.M., Chien, Y.J., Dooley, J.J. and Davidson, C.L., (2006) Potential for carbon dioxide sequestration in flood basalts. Jour. Geophys. Res., v.111, pp.12201.CrossRefGoogle Scholar
  31. Oelkers, E.H., Gislason, S.R. and Matter, J. (2008) Mineral Carbonation of CO2. Elements, v.4, pp.331–335.Google Scholar
  32. Palandri, J. L. and Kharaka, Y. K. (2005) Ferric iron-bearing sediments as a mineral trap for CO2 sequestration: Iron reduction using sulfur-bearing waste gas. Chemical Geol., v.217, pp.351.CrossRefGoogle Scholar
  33. Pattanayak, S.K. and Shrivastava, J.P. (1999) Petrography and major-oxide geochemistry of basalts from the Eastern Deccan Volcanic Province, India. In: Subbarao, K.V. (Ed.), Deccan Volcanic Province, West Volume. Mem. Geol. Soc. India, No.43(1), pp.233–270.Google Scholar
  34. Pham, T.H.V., Lu, P., Aagaard, P., Zhu, C. and Hellevang, H. (2011) On the potential of CO2-water-rock interactions for CO2 storage using a modified kinetic model. International Journal of Greenhouse Gas Control, v.5, pp.1002–1015. doi:10.1016/j.ijggc.2010.12.002.CrossRefGoogle Scholar
  35. Pham, T.H.V., Aagaard, P. and Hellevang, H. (2012) On the potential for CO2 mineral storage in continental flood basalts - PHREEQC batchand 1D diffusion–reaction simulations. Geochemical Transactions, v.13, pp.5. doi:10.1186/1467-4866-13-5.CrossRefGoogle Scholar
  36. Prasad, P.S.R., Sarma, D.S., Sudhakar, L., Basavaraju, U., Singh, R.S., Zahida B., Archana, K.B., Chavan, C.D. and Charan, S.N. (2009) Geological sequestration of carbon dioxide in Deccan basalts: preliminary laboratory study. Curr. Sci., v.96, pp.288–291.Google Scholar
  37. Rani, N., Shrivastava, J.P. and Bajpai, R.K. (2013) Deccan Traps-associated obsidian glass: a nuclear waste containment. Current Science, v.105(3), pp.371–378.Google Scholar
  38. Salil, M.S., Shrivastava, J.P. and Pattanayak, S.K. (1997) Similarities in Mineralogical and Chemical attributes of detrital clays of Maastrichtian Lameta beds and weathered Deccan basalts. Chemical Geol., v.136, pp.23–32.CrossRefGoogle Scholar
  39. Schaef, H.T., McGrail, B.P. and Owen, A.T. (2009) Basalt-CO2-H2O Interactions and Variability in Carbonate Mineralization Rates. Energy Procedia, v.1, pp.4899–4906.CrossRefGoogle Scholar
  40. Schaef, H.T., McGrail, B.P., Owen, A.T. (2010) Carbonate mineralization of volcanic province basalts. Internat. Jour. Greenhouse Gas Control, v.4(2), pp.249–261.CrossRefGoogle Scholar
  41. Shrivastava, J.P. and Ahmad, M. (2005) A review of research on Late Cretaceous volcanic-sedimentary sequences of the Mandla Lobe: implications for Deccan volcanism and the Cretaceous/Palaeogene boundary. Cretaceous Res., v, 26(1), pp.145–156.CrossRefGoogle Scholar
  42. Shrivastava, J.P., Rani, N. and Pathak, V. (2016) Geochemical modeling and experimental studies on mineral carbonation of primary silicates for longterm immobilization of CO2 in basalt from the eastern Deccan volcanic province. Jour. Indian Geophys. Union, Sp. vol. 1, pp.42–58.Google Scholar
  43. Spycher, N., Pruess, K. and Ennis-King, J. (2003) CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bars. Geochim. Cosmochim. Acta, v.67, pp.3015–3031.Google Scholar
  44. Wilson, M. (1989). Igneous Petrogenesis. A Global Tectonic Approach, London: Int. Thompson, 466p.CrossRefGoogle Scholar
  45. Wolery, T. W. and Jarek, R. L. (2003) EQ3/6, version 8.0-software user’s manual. Civilian Radioactive Waste Management System, Management and Operating Contractor. Sandia National Laboratories, Albuquerque, New Mexico.Google Scholar
  46. Wolff-Boenisch, D. and Galeczka, I.M. (2018) Flow-through reactor experiments on basalt-(sea)water-CO2 reactions at 90 °C and neutral pH. What happens to the basalt pore space under postinjection conditions? Internat. Jour. Greenhouse Gas Control, v.68, pp.176–190. doi.org/10.1016/j.ijggc.2017.11.013.Google Scholar
  47. Xiong, W., Wells, R. K., Menefee, A. H., Skemer, P. Ellis, B. R., and Giammar, D. E. (2017) CO2 mineral trapping in fractured basalt. Internat. Jour. Greenhouse Gas Control, v.66, pp.204–217.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2019

Authors and Affiliations

  1. 1.Department of GeologyUniversity of DelhiDelhiIndia

Personalised recommendations