Journal of the Geological Society of India

, Volume 93, Issue 3, pp 257–262 | Cite as

Morphology and Chemistry of Zircons from the Paleoproterozoic Cu (±Mo±Au) Hosting Granitoids of Malanjkhand Mine Area, Central India

  • Deepa Arya
  • Saurabh Gupta
  • Santosh KumarEmail author
  • Igor Broska
  • Tomáš Vaculovic
Research Articles


Morphology and chemistry of zircons from Paleoproterozoic granitoids (~2470 Ma) of Malanjkhand mine area, central India have been used to understand nature of parental magma and its evolutionary history. External morphology of nonmetamict zircons belongs to S3, S1-2, G1, P2, S24 and S25 subtypes of Pupin’s typological scheme, which crystallized in a calc-alkaline, metaluminous hybridizing magma. The Zr/Hf ratios of zircons point to a low degree of differentiation of parental magma. Most zircons bear low sum of rare earth elements (∑REE<700 ppm) indicating late stage of crystallization, whereas a zircon with anomalously high LREE and ∑REE probably indicates at an early stage of its crystallisation in the absence of other REE bearing accessory phases or might have been influenced later by hydrothermal fluids. The Nb content of zircons is similar to those commonly formed in high-K, calc-alkaline granitoid magma series. The zircon (Th/U>1) with high ∑REE (5019 ppm) and Ti (56 ppm) contents provides zircon crystallization temperature (TZr) of 938°C suggesting its crystallisation in a relatively high-T intermediate magma composition. However, zircons with Th/U<1 bear Ti content below the detection limit (33 ppm) due to their crystallization in a relatively more evolved aluminous melt fraction of parental calc-alkaline magma. All zircons exhibit positive Ce- and negative Eu-anomalies, which probably indicate mildly oxidising magma condition of zircon crystallization synchronous with plagioclase.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharyya, S. K. and Roy, A. (2000) Tectonothermal history of the Central Indian tectonic zone and reactivation of major faults/shear zones. Jour. Geol. Soc. India, v.55, pp.239–256.Google Scholar
  2. Asthana, D., Kumar, H., Balakrishnan S., Xia, Q. and Feng, M. (2016). An early Cretaceous analogue of the ~2.5 Ga Malanjkhand porphyry Cu deposit, Central India. Ore Geol. Rev., v.72, pp.1197–1212.CrossRefGoogle Scholar
  3. Bea, F. (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Jour. Petrol., v.37, pp.521–552.CrossRefGoogle Scholar
  4. Belousova, E.A., Griffin, W.L. and O’Reilly, S.Y. (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modeling: examples from eastern Australian granitoids. Jour. Petrol., v.47, pp.329–353.CrossRefGoogle Scholar
  5. Benisek, A. and Finger, F. (1993) Factors controlling the development of prism faces in granite zircons: a microprobe study. Contrib. Mineral. Petrol., v.114, pp.441–451.CrossRefGoogle Scholar
  6. Bhargava, M. and Pal, A.B. (1999) Anatomy of a porphyry copper deposit-Malanjkhand. Madhya Pradesh. Jour. Geol. Soc. India, v.53, pp.675–691.Google Scholar
  7. Bhargava, M. and Pal, A.B. (2000) Cu-Mo-Au metallogeny associated with Proterozoic tectono-magmatism in Malanjkhand porphyry copper district, M.P. Jour. Geol. Soc. India, v.56, pp. 395–413.Google Scholar
  8. Broska, I. and Petrík, I. (2014). Accessory phases in the genesis of the igneous rocks. In: Kumar, S., Singh, R.N. (Eds.), Modelling of Magmatic and Allied Processes. Soc. Earth Sci., Ser, v.83, pp.109–149.Google Scholar
  9. Corfu, F., Hanchar, J. M., Hoskin, P. W. O. and Kinny, P. (2003). Atlas of zircon textures. In: Hanchar, J. M. and Hoskin, P. W. O. (Eds.), Zircon. Reviews in Mineralogy and Geochemistry, v.53, pp.469–499.CrossRefGoogle Scholar
  10. Ferry, J.M. and Watson, E.B. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol., v.154, pp.429–437.CrossRefGoogle Scholar
  11. Fu, B., Mernagh, T.P., Kita, N.T., Kemp, A.I.S. and Valley, J.W. (2009) Distinguishing magmatic zircon from hydrothermal zircon: A case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia. Chemical Geol., v.259, pp.131–142.CrossRefGoogle Scholar
  12. Griffin, W.L., Wang, X., Jackson S.E., Pearson, N.J., O’Reilly, S.Y., Xua, X. and Zhou, X. (2010) Zircon chemistry and magma mixing, SE China: Insitu analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, v.61, pp.237–269.CrossRefGoogle Scholar
  13. Heaman, L. M., Bowins, R. and Crocket, J. (1990). The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochim. Cosmochim. Acta, v.54, pp.1597–1607.CrossRefGoogle Scholar
  14. Hönig, S., Èopjaková1, R., Škoda, R., Novák, M., Dolejš, D., Leichmann, J. and Galiová, M.V. (2014) Garnet as a major carrier of the Y and REE in the granitic rocks: An example from the layered anorogenic granite in the Brno Batholith, Czech Republic. Amer. Mineral., v.99, pp.1922–1941.CrossRefGoogle Scholar
  15. Hoskin, P. W. O. and Schaltegger, U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar, J.M. and Hoskin, P.W.O. (Eds.), Zircon. Reviews in Mineralogy and Geochemistry, v.53, pp.27–62.CrossRefGoogle Scholar
  16. Hoskin, P.W.O. (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta, v.69, pp.637–648.CrossRefGoogle Scholar
  17. Hoskin, P.W.O., Kinny, P.D. and Wyborn, D. (1998) Chemistry of hydrothermal zircon: investigating timing and nature of water-rock interaction. In: Water-Rock Interaction, WRI-9. Arehart, G.B., Hulston, J.R. (Eds.), A.A. Balkema, Rotterdam, pp.545–548.Google Scholar
  18. Jain, S.C., Yedekar, D.B., and Nair, K.K.K. (1991). Central Indian Shear Zone: a major pre-Cambrian crustal boundary. Jour. Geol. Soc. India., v.37, pp. 521–531.Google Scholar
  19. Kirkland, C.L., Smithies, R.H., Taylor, R.J.M., Evans, N. and McDonald, B. (2015) Zircon Th/U ratios in magmatic environs. Lithos, v. 212–215, pp. 397–414.CrossRefGoogle Scholar
  20. Kumar, S. and Rino, V. (2006). Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoids, central India: evidence of magma mixing, mingling, and chemical equilibration. Contrib. Mineral. Petrol., v.152, pp.591–609.CrossRefGoogle Scholar
  21. Kumar, S., Rino, V., and Pal, A.B. (2004a) Field evidence of magma mixing from microgranular enclaves hosted in Palaeoproterozoic Malanjkhand granitoids, central India. Gondwana Res., v.7, pp.539–548.CrossRefGoogle Scholar
  22. Kumar, S., Rino, V. and Pal, A.B. (2004b) Typology and geochemistry of microgranular enclaves hosted in Malanjkhand granitoids, central India. Jour. Geol. Soc. India, v.64, pp.277–292.Google Scholar
  23. Kumar, S., Rino, V., Hayasaka, Y., Kimura, K., Raju, S., Terada, K. and Pathak, M. (2017) Contribution of Columbia and Gondwana Supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U-Pb SHRIMP zircon geochronology and geochemistry. Lithos, v.277, pp. 356–375.CrossRefGoogle Scholar
  24. Lankvelt, A. V., Schneider, D. A., Biczok, J., McFarlane, C. R. M. and Hattori, K. (2016) Decoding zircon geochronology of igneous and alteration events based on chemical and microstructural features: a study from the Western Superior Province, Canada, Jour. Petrol., v.57, pp. 1309–1334CrossRefGoogle Scholar
  25. Lawrie, K.C., Mernagh, T.P., Ryan, C.G., van Achterbergh, E. and Black, L.P. (2007) Chemical fingerprinting of hydrothermal zircons: an example from the Gidginbung high sulphidation Au–Ag–(Cu) deposit, Australia. Proc. Geologists’ Assoc., v.118, pp.37–46.CrossRefGoogle Scholar
  26. Levinson, A. A. and Borup, R. A. (1960) High hafnium zircon from Norway. Amer. Mineral., v.45, pp.562–565.Google Scholar
  27. Mall, D.M., Reddy, P.R. and Mooney, W.D. (2008) Collision tectonics of the Central Indian Suture zone as inferred from a deep seismic sounding study. Tectonophysics, v.460, pp.116–123.CrossRefGoogle Scholar
  28. Miller, J., Matzel, J., Miller, C., Burgess, S. and Miller, R. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. Jour. Volcanol. Geotherm. Res., v.167, pp.282–299.CrossRefGoogle Scholar
  29. Nakamura, N. (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta, v.38, pp.757–775.CrossRefGoogle Scholar
  30. Nardi, L.V.S., Formoso, M.L.L., Müller, I.F., Fontana, E., Jarvis, K. and Lamarão, C. (2013) Zircon/rock partitition coefficints of REEs, Y, Th, U, Nb and Ta in granitic rocks: Uses for provenance and mineral exploration purposes. Chemical Geol., v.335, pp.1–7.CrossRefGoogle Scholar
  31. Nehru, C.E. and Sikka, D.B. (2018) Petrochemistry of dyke rocks from the Paleoproterozoic Malanjkhand porphyry copper mine, India: a possible link to the mineralization. Jour. Appl. Geochem., v.20, pp.1–28.Google Scholar
  32. Pal, A.B. and Bhargava, M. (1998) Regional geology and petrochemistry of Proterozoic Cu-Mo mineralization in Malanjkhand granitoids, Madhya Pradesh. In: B.S. Paliwal, (Ed.), The Indian Precambrian. Scientific Publ. (India), Jodhpur, pp.333–350.Google Scholar
  33. Pandit, D. (2014) Chloritization in Paleoproterozic granite ore system at Malanjkhand, Central India: mineralogical studied and mineral fluid equilibria modelling. Curr. Sci., v.106, pp.565–581.Google Scholar
  34. Pandit, D. (2018) Crystallization evolution of accessory minerals in palaeoproterozoic granites of Bastar Craton, India. Curr. Sci., v.114, pp. 2329–2342.Google Scholar
  35. Pandit, D. and Panigrahi, M.K. (2012) Comparative petrogenesis and tectonics of Paleoproterozoic Malanjkhand and Dongargarh granitoids, Central India. Jour. Asian Earth Sci., v. 50, pp. 14–26.CrossRefGoogle Scholar
  36. Pandit, D., Panigrahi, M. K., and Moriyama, T. (2014a) Constrains from magmatic and hydrothermal epidotes on crystallization of granitic magma and sulphide mineralization in Paleoproterozoic Malanjkhand Granitoid, Central India. Chem. der Erde, v.74, pp.715–733.CrossRefGoogle Scholar
  37. Pandit, D., Panigrahi, M. K., Moriyama, T., Ishihara, S. (2014b) Comparative geochemical, magnetic susceptibility, and fluid inclusion studies on Paleoproterozoic Malanjkhand and Dongargarh granitoids, central India and implications to metallogeny. Mineral. Petrol., v.108, pp.663–680.CrossRefGoogle Scholar
  38. Panigrahi M.K. and Mookherjee A. (1997): The Malanjkhand coper (+molybdenium) deposit, India: mineralisation from a low temperature ore fluid of granitoid affiliation. Mineralium Deposita, v.32, pp.133–148.CrossRefGoogle Scholar
  39. Panigrahi, M. K., Brendan, R. B., Misra, K. C. and Naik, R. K. (2004) Age of granitic activity associated with copper molybdenum mineralization as Malanjkhand, Central India. Miner. Deposita, v.39, pp.670–677.CrossRefGoogle Scholar
  40. Panigrahi, M.K., Bream, B.R., Mishra, K.C. and Naik, R.K. (2004) Age of granitic activity associated with copper-molybdenum mineralization at Malanjkhand, central India. Mineral. Deposita, v.39, pp.670–677.CrossRefGoogle Scholar
  41. Pettke, T., Audétat, A., Schaltegger, U. and Heinrich, C.A. (2001) Zircon trace element chemistry by LA-ICP-MS: a monitor for the magmatic-tohydrothermal evolution of a crystallizing pluton? Jour. Conf. Abstr., v.6, pp.680.Google Scholar
  42. Pettke, T., Audetat, A., Schaltegger, U., Heinrich, C.A., 2005. Magmatic-tohydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia)—Part II: evolving zircon and thorite trace element chemistry. Chemical Geol., v.220, pp.191–213.CrossRefGoogle Scholar
  43. Pupin, J. P. (1980) Zircon and granite petrology. Contrib. Mineral. Petrol., v.73, pp.207–220.CrossRefGoogle Scholar
  44. Pupin, J. P. (2000) Granite genesis related to geodynamics from Hf–Y in zircon. Trans. Roy. Soc. Edinb. Earth Sci., v.91, pp.245–256.CrossRefGoogle Scholar
  45. Rai, K.L. and Venkatesh, A.S. (1993) Geological setting and nature of copper and molybdenum mineralization in the intra-continental acid magmatic regime of Malanjkhand, central India. Resource Geology, Special Issue, v.15, pp.285–297.Google Scholar
  46. Ramachandra, H.M. and Roy, A. (1998). Geology of intrusive granitoids with particular reference to Dongargarh granite and their impacton tectonic evolution of the Precambrian in central India. Indian Miner., v.52 (1–2), pp.15–32.Google Scholar
  47. Roy, A., Prasad, M.H., Bhowmik, S.K. (2001) Recognition of pre-Grenvillian and Grenvillian tectonothermal events in the Central Indian Tectonic Zones: implications on Rodinian crustal assembly. Gondwana Res., v.4, pp.755–757.CrossRefGoogle Scholar
  48. Rubatto, D. (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem. Geol., v.184, pp.123–138.CrossRefGoogle Scholar
  49. Sawka, W.N. (1988) REE and trace element variation in accessory minerals and hornblende from the strongly zoned McMurry Meadows Pluton, California. Trans Roy Soc. Edinburgh: Earth Sci., v.79, pp.157–168.CrossRefGoogle Scholar
  50. Schaltegger, U., Schmitt, A.K. and Horstwood, M.S.A. (2015) U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geol., v.402, pp. 89–110.CrossRefGoogle Scholar
  51. Sikka, D.B. and Nehru, C.E. (1997) Review of Precambrian porphyry Cu-Mo-Au deposits with special reference to Malanjkhand porphyry copper deposits, M.P. Jour. Geol. Soc. India, v.49, pp.239–288.Google Scholar
  52. Sikka, D.B. and Nehru, C.E. (2002) Malanjkhand copper deposits, India: is it not a porphyry type? Jour. Geol. Soc. India, v.59, pp.339–362.Google Scholar
  53. Sikka, D.B., Petruk, W.C., Nehru, E. and Zhang, Z. (1991) Geochemistry of secondary copper minerals from Proterozoic porphyry copper deposit, Malanjkhand, India. Ore Geol. Rev., v.6, pp.57–290.CrossRefGoogle Scholar
  54. Stein, H.J., Hannah, J.L., Zimmerman, A. and Markey, R.J. (2006). Mineralization and deformation of the Malanjkhand terrane (2,490–2,440 Ma) along the southern margin of the Central IndianTectonic Zone. Mineralium Deposita, v.40, pp.755–765.CrossRefGoogle Scholar
  55. Stein, H.J., Hannah, J.L., Zimmerman, A., Markey, R.J., Sarkar, S.C. and Pal, A.B. (2004) A 2.5 Ga porphyry Cu-Mo-Au deposit at Malanjkhand, central India: implications for Late Archean continental assembly. Precambrian Res., v.134, pp.189–226.CrossRefGoogle Scholar
  56. Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: its Composition and Evolution. Oxford: Blackwell Scientific, pp.312.Google Scholar
  57. Tripathi, C., Ghosh, P.K., Thambi, P.I., Rao, T.V. and Chandra, S. (1981). Elucidation of the stratigraphy and structure of Chilpi group. Geol. Surv. India, Special Publ., v.3, pp.17–30.Google Scholar
  58. Vervoort, J. D. and Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. et Cosmochim. Acta, v.63, pp.533–556.CrossRefGoogle Scholar
  59. Von Knorring, O. and Hornung, G. (1961) Hafnian zircons. Nature, v.190, pp.1098–1099.CrossRefGoogle Scholar
  60. Wang, X., Griffin, W.L. and Chen, J. (2010) Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Jour., v.44, pp.65–72.CrossRefGoogle Scholar
  61. Wayne, D.M. and Sinha, A.K. (1992) Stability of zircon U-Pb systematics in a greenschist-grade mylonite: an example from the Rockfish Valley Fault Zone, Central Virginia, USA. Jour. Geol., v.10, pp.593–603.CrossRefGoogle Scholar
  62. Yedekar, D.B., Jain, S.C., Nair, K.K.K. and Dutta, K.K. (1990). The central Indian Collision Suture, in Precambrian of central India. Geol. Surv. India Spec. Publ., v.28, pp.1–43.Google Scholar

Copyright information

© Geological Society of India 2019

Authors and Affiliations

  • Deepa Arya
    • 1
  • Saurabh Gupta
    • 1
  • Santosh Kumar
    • 1
    Email author
  • Igor Broska
    • 2
  • Tomáš Vaculovic
    • 2
  1. 1.Department of Geology, Centre of Advanced StudyKumaun UniversityNainitalIndia
  2. 2.Institute of Earth ScienceSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations