Journal of the Geological Society of India

, Volume 92, Issue 6, pp 687–694 | Cite as

Heliborne Time Domain Electromagnetic Data Aiding Delineation of Carbonaceous Shale in Southwestern Part of Bijawar Basin and its Implication on Basinal Stratigraphy

  • A. K. PathakEmail author
  • Harsha Yalla
  • R. P. Singh
  • A. K. Chaturvedi


Geophysical methods are tools to unravel concealed geological features that enhance knowledge. Heliborne time domain electromagnetic (TDEM) survey carried out over volcano-sedimentary sequence of Palaeoproterozoic Bijawar basin indicated presence of conductor in the western part of the basin. Subsequently boreholes drilled intercepted rhythmites made up of carbonaceous shale and dolomite within Bajno dolomite Formation. Measurement of conductivity on core samples established the high conductive carbonaceous shale as the contributor for TDEM response. TDEM signature indicate widespread presence of rhythmites in the western part of Bijawar basin reflecting different hydrodynamic condition from other parts of Bajno dolomite. Thus, Bajno dolomite Formation is classified into two members viz. Tigoda member and Sarwa member.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auken E., Nebel L., Sorensen K., Breiner M., Pellerin L. and Christensen N. B. (2002) Emma -a geophysical training and education tool for electromagnetic modeling and analysis, Jour. Environ. and Engg. Geophys., v.7(2), pp.57–68.CrossRefGoogle Scholar
  2. Banerjee D.M., Khan M.W.Y., Srivastana Neeta, and Saigal G.C., (1982) Precambrian phosphorites in the Bijawar rocks of Hirapur-Bassia areas, Sagar District, Madhya Pradesh, India, Mineral. Deposita, v.17, pp.349–362.Google Scholar
  3. Bell R.T. (1979) Uranium in shales-A Review, In:M. Kimberley, Michael (Ed.), Short Course Handbook, Vol. 3 Uranium Deposits, their mineralogy and origin, pp.307–329Google Scholar
  4. Bose P.K., Sarkar S., Chakrabarty S., and Banerjee S. (2001) Overview of the Meso-to Neoproterozoic evolution of the Vindhyan basin, central India, Sediment. Geol., v.141-142, pp.395–419.Google Scholar
  5. Chakrabarti C., Pyne T.K., Gupta P., Basumallick S. and Guha D., (2004) The Manual of the Geology of India, Precambrian, Northern and Northwestern Part of the Peninsula, v.1(77), pp.42–62.Google Scholar
  6. Chakraborty C., 2006, Proterozoic intracontinental basin: The Vindhyan example. Jour. Earth System Sci., v.115(1), pp.3–22.CrossRefGoogle Scholar
  7. Chaudhuri A.K., Mukhopadhyay J., Patranabis Deb S. and Chanda S.K. (1999) The Neoproterozoic cratonic successions of Peninsular India, Gondwana Res., v.2(2), pp. 213–225CrossRefGoogle Scholar
  8. Collinson J.D and Thompson D.B. (1987) Sedimentary structures, Second Ed, CBS Publishers, 207p.Google Scholar
  9. Condie K.C., Wilks M., Rosen D.M. and Zlobin V.I. (1991) Geochemistry of metasediments from the Pre Cambrian Hapschan series, eastern Arabian shield, Siberia. Precambrian Res., v.50, pp.37–47.CrossRefGoogle Scholar
  10. Cox, R., Lowe, D.R. and Cullers, R.L. (1995) The influence of sediment recycling and basement composition of evolution of mudrock chemistry in southwestern United States, Geochim Cosmochim Acta, v.59(14), pp.2929–2940.CrossRefGoogle Scholar
  11. Duncan, D.C. and Swanson, V.E. (1965) Organic-Rich Shale of the United States and World Land Areas, United States Department of the Interior, Geological Survey Circular, No. 523.CrossRefGoogle Scholar
  12. Flügel Erik, Axel Munnecke (2010) Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, Springer publication, 929p.CrossRefGoogle Scholar
  13. Haldar D. and Ghosh R.N. (1978) Annual Progress Report of Geological Mapping of Basic rocks in Bijawar group, Sagar and Chhatarpur districts, Geol. Surv. India Unpubl. Prog. Rept.Google Scholar
  14. Harris, P.M., Moore, C.H. and Wilson, J.L. (1985) Carbonate Platforms, in J.E. Warme and K.W. Shanley, eds., Carbonate Depositional Environments, Modern and Ancient, Part 2: Carbonate Platforms: Colorado School of Mines Quarterly, v.80(4), pp.31–60Google Scholar
  15. Huang, H.P. and Fraser D.C. (1999) Airborne resistivity data leveling, Geophysics, v.64(2), pp.378–385.CrossRefGoogle Scholar
  16. Hunter D. and Macnae J.C. (2001) Subsurface conductivity structure as approximated by conductivity-depth transforms, ASEG Extd. Abs., Brisbane.Google Scholar
  17. Krauskopf, K.B. (1979) Introduction to Geochemistry, McGraw-Hil Book Company, New York, 617p.Google Scholar
  18. Kumar, B., Srivastava, R.K., Kha, D.K., Pant, N.C. and Bhandaru, B.K. (1990) A revised stratigraphy of the rocks of the area of the Bijawar Group in Central India; Indian Minerals, v.44, pp.303–314.Google Scholar
  19. Macnae J. and Lamontagne Y. (1987) Imaging quasi-layered conductive structures by simple processing of transient electromagnetic data. Geophysics, v.52(4), pp.545–554.CrossRefGoogle Scholar
  20. Macnae J., King A., Stolz N., Osmakoff A. and Blaha A. (1998) Fast AEM data processing and inversion, Exploration Geophysics, v.29, pp.163–169.CrossRefGoogle Scholar
  21. Mani G. (1969) Report on the reconnaissance for phosphorite and systematic mapping of Bijawar Group in Sagar and Chhatarpur districts, M.P., Geol. Surv. India Unpubl. Prog. Rept.Google Scholar
  22. Mathur S.H. (1960) A note on the Bijawar Series in the eastern part of the type area, Chatarpur district, M.P., Rec. Geol. Surv. India, v.6(3), pp.539–544.Google Scholar
  23. Mauring, E. and Kihle A. (2006) Leveling aerogeophysical data using a moving differential median filter, Geophysics, v.71(1), pp.5–11.CrossRefGoogle Scholar
  24. Medlicott, H. B. (1859) On the Vindhyan rocks and their associates in Bundelkhand, Mem.G.S.I, v. II, pp.1–95Google Scholar
  25. Michael, A., Murphy and Amos Salvador (2002) International Stratigraphic Guide -An abridged version, International Commission on Stratigraphy, International Subcommission on Stratigraphic Classification of IUGS (online at Scholar
  26. Nabighian M.N., and Macnae J.C. (1991) Time Domain Electromagnetic Prospecting Methods, Electromagnetic methods in applied geophysics (Eds), vol. 2.Google Scholar
  27. Palacky G.J. (1981) The airborne electromagnetic method as a tool of geological mapping: Geophys. Prospect., v.29, pp.60–88.Google Scholar
  28. Pant, N.C. and Banerjee D.M. (1990) Patterns of sedimentation in the type Bijawar Basin of central India, In: Precambrian of Central India. Geol. Surv. India, Spec. Publ., v.28, pp.653–657.Google Scholar
  29. Rajabi M., Mansourian A., Pilesjo P., Hedefalk F., Groth R. and Bazmani A. (2014) Comparing knowledge-driven and data-driven Modeling methods for susceptibility mapping in spatial epidemiology: a case study in Visceral Leishmaniasis. In: Huerta, Schade, Granell (Eds.), Connecting a Digital Europe through Location and Place, Proc. AGILE Intl. Conf. on Geograph Infrm. Sc., Castellón.Google Scholar
  30. Reineck H.E. and Singh I.B. (1975) Depositinal sedimentary environments with reference to terrigenous clastics, 1st Ed, Springer-Verlag Publ., 439p.Google Scholar
  31. Roday P.P., Chuorasia L.P. and Chaudhari S. (1989) Structural analysis of shear zones in basement granite and their relationship with folding, shearing and faulting in the cover sediments near Hirapur, District sagar, Central India; Jour. Geo. Soc. India, v.33, pp.387–408.Google Scholar
  32. Sarkar A., Ghosh S., Singhai R. K. and Gupta S. N. (1997) Rb-Sr Geochronology of the Dargawan sill: constraint of the Bijawar sequence of Central India, Int. Conf. Isotopes in the solar system, PRL, Ahmedabad, pp.100–101.Google Scholar
  33. Slade J., Sattel D. and Brian S. (1999) The application of broadband airborne time domain electromagnetic data to mapping shallow stratigraphy, SEG Technical Program Extd. Abs., pp.551–554.Google Scholar
  34. Sonakia A. and Kumar B. (1978) Phosphorite resources in Hirapur Basia belt, Sagar and Chhatarpur district, Madhya Pradesh, Geol. Surv. India, Unpubld. Prog. Rept.Google Scholar
  35. Stoltz E. M. and Macnae J. (1998) Evaluating EM waveforms by singularvalue decomposition of exponential basis functions. Geophysics, v.63(1), pp.64–74.CrossRefGoogle Scholar
  36. Swanson V.E. (1961) Geology and geochemistry of uranium in marine black shales-a review: U.S. Geol. Surv. Prof. Paper 356-C, pp.67–112.Google Scholar
  37. Taylor R.S. and Mclennan, S.M. (1985) The Continental Crust: its Composition and Evolution, Blackwell Scientific Publication, 311p.Google Scholar
  38. Todorovski L. and Dzeroski S. (2004) Integrating knowledge-driven and datadriven approaches to Modeling, EnviroInfo, Geneva, pp.215–226.Google Scholar
  39. Valleau, N. (2000) Hem data processing -a practical overview. Exploration Geophysics, v.31, pp.584–594.CrossRefGoogle Scholar
  40. Van de Kamp P.C. and Leake B.E. (1985) Petrography and geochemistry of feldspathic and mafic sediments of the north-eastern Pacific margin, Trans. Roy. Soc. Edinb. Earth Sci., v.76, pp.411–49.CrossRefGoogle Scholar
  41. Ward, S.H. and Hohmann G.W. (1988) Electromagnetic Theory for Geophysical Applications, Electromagnetic Methods In: Applied Geophysics (Eds.), Soc. Expl. Geophys., v.1, pp.130–311.Google Scholar
  42. Wilson A.F. (1874) Progress reports of mapping in Central India, Geol. Surv. India, Unpubld. Rept.Google Scholar
  43. Zubovic P., Stadnichenko, T. and Sheffey, N.B. (1961) Chemical basis of minor elements association in coal and other carbonaceous sediments, US Geol. Surv. Prof. Paper, No. 424-D, D345–D348.Google Scholar

Copyright information

© Geological Society of India 2018

Authors and Affiliations

  • A. K. Pathak
    • 1
    Email author
  • Harsha Yalla
    • 1
  • R. P. Singh
    • 2
  • A. K. Chaturvedi
    • 3
  1. 1.Atomic Minerals Directorate for Exploration and ResearchHyderabadIndia
  2. 2.DelhiIndia
  3. 3.Formerly with AMDHyderabadIndia

Personalised recommendations