Advertisement

Journal of the Geological Society of India

, Volume 92, Issue 4, pp 407–418 | Cite as

Evaluation of Organic Matter, Hydrocarbon Source, and Depositional Environment of Onshore Warkalli Sedimentary Sequence from Kerala-Konkan Basin, South India

  • Runcie P. Mathews
  • Bhagwan D. Singh
  • Vikram P. Singh
Research Articles
  • 13 Downloads

Abstract

Multidisciplinary analysis of the carbonaceous sediments of Warkalli Formation (Mio-Pliocene) from the Warkalli cliff section has been done to assess the source of organic matter, palaeodepositional settings and the hydrocarbon potential. The n-alkane distribution from n-C12 to n-C33 along with bimodal distribution indicates significant organic matter contribution from microbial activity and higher plants. The contribution from angiosperm source vegetation is indicated by the oleanane type of triterpenoids. The hopanes distribution indicates the immature stage of the organic matter, which is in agreement with the Tmax (av. 401 °C) and huminite reflectance (av. 0.28% Rr) values. The total organic carbon (TOC) contents vary between 0.8 and 6.72 wt. % in the studied sediments. Hydrogen index and oxygen index values range from 16 to106 mg HC/g TOC, and 113 to 344 mg CO2/g TOC, respectively. The maceral content is low, being dominated by the detrohuminite submaceral and the mineral matter accounts for 68 to 77% of the total composition. The phytoclast group (63–87%) is dominant with subordinate amorphous organic matter (4–35%). The study shows that the sediments were deposited in a marginal suboxic basin with intermittent variations. All the parameters unequivocally suggest that the studied sequence holds the potential to generate gaseous hydrocarbons.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awasthi, N. and Srivastava, R. (2005) Neogene Flora of Kerala Coast and its Palaeoecological and Phytogeographical Implications. In: R. Reddy et al.,(Eds.) Gleanings in Plant Sciences, Prof. Ramanujam Commem. Vol. Dttasons, Nagpur, pp.265–277.Google Scholar
  2. Batten, D. J. (1981) Palynofacies, organic maturation and source potential for petroleum. In: Brooks, J. (Ed.), Organic Maturation Studies and Fossil Fuel Exploration, Academic Press, London, pp.201–224.Google Scholar
  3. Batten, D.J. (1996) Palynofacies and petroleum potential. In: Jansonius, J. and Mc Gregor D.C. (Eds.), Palynology: Principles and Applications, AASP, v.3, pp.1065–1084.Google Scholar
  4. Batten, D.J. and Stead, D.T. (2005) Palynofacies analysis and its stratigraphic application. In: Koutsoukos, E.A.M. (Ed.), Applied Stratigraphy, Springer, Netherlands, pp.203–226.CrossRefGoogle Scholar
  5. Bechtel, A., Gruber, W., Sachsenhofer, R. F., Gratzer, R., Lücke, A. and Püttmann, W. (2003) Depositional environment of the Late Miocene Hausruck lignite (Alpine Foreland Basin): insights from petrography, organic geochemistry, and stable isotopes. Internat. Jour. Coal Geol., v.53, pp. 153–180.CrossRefGoogle Scholar
  6. Bechtel, A., Sachsenhofer, R.F., Kolcon, I., Gratzer, R., Otto, A. and Püttmann, W. (2002) Organic geochemistry of the Lower Miocene Oberdorf lignite (Styrian Basin, Austria): its relation to petrography, palynology and the palaeoenvironment. Internat. Jour. Coal Geol., v.51, pp.31–57.CrossRefGoogle Scholar
  7. Bianchi, T.S., Findlay, S. and Dawson, R. (1993) Organic matter sources in the water column and sediments of the Hudson River Estuary: the use of plant pigments as tracers. Estuar. Coast. Shelf Sci., v.36, pp.359–376.CrossRefGoogle Scholar
  8. Bordenave, M.L., Espitalié, J., Leplat, P., Oudin, J.L. and Vandenbroucke, M. (1993) Screening techniques for source rock evaluation; In: Bordenave M.L. (Ed.), Applied Petroleum Geochemistry Editions, Technip, Paris, pp.217–276.Google Scholar
  9. Bujak, J.P., Barss, M.S. and Williams, G.L. (1977) Offshore east Canada’s organic type and color and hydrocarbon potential. Oil Gas Jour., v.75, pp.198–201.Google Scholar
  10. Campanile, D., Nambiar, C.G., Bishop, P., Widdowson, M. and Brown, R. (2008) Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin. Basin Res., v.20, pp.3–22.CrossRefGoogle Scholar
  11. Canuel, E.A., Freeman, K.H. and Wakeham, S.G. (1997) Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments. Limnol. Oceanogr., v.42 pp.1570–1583.CrossRefGoogle Scholar
  12. Canuel, E. A. and Zimmerman, A. R. (1999) Composition of particulate organic matter in the southern Chesapeake Bay: sources and reactivity. Estuaries, v.22, pp.980–994.CrossRefGoogle Scholar
  13. Carvalho, de A. M., Mendonça Filho, J. G. and Menezes, T. R. (2006) Palaeoenvironmental reconstruction based on palynofacies analysis of the Aptian-Albian succession of the Sergipe Basin, Northeastern Brazil. Marine Micropal., v.59, pp.56–81.CrossRefGoogle Scholar
  14. Chaffee, A.L., Hoover, D.S., Johns, R.B. and Schweighardt, F.K. (1986) Biological markers extractable from coal. In: Johns, R.B. (Ed.), Biological Markers in the Sedimentary Record Amsterdam, pp.311–347.Google Scholar
  15. Cranwell, P.A. (1977) Organic geochemistry of CamLoch (Sutherland) sediments. Chem. Geol., v.20, pp.205–221.CrossRefGoogle Scholar
  16. Cranwell, P. A., Eglinton, G. and Robinson, N. (1987) Lipids of aquatic organisms as potential contributors to lacustrine sediments. Org. Geochem., v.11, pp.513–527.CrossRefGoogle Scholar
  17. Dahl, B., Bojesen-Koefoed, J., Holm, A., Justwan, H., Rasmussen, E. and Thomsen, E. (2004). A new approach to interpreting Rock-Eval S2 and TOC data for kerogen quality assessment. Org. Geochem., v.35, pp.1461–1477.CrossRefGoogle Scholar
  18. Davey, R.J. and Rogers, J. (1975) Palynomorph distribution in recent offshore sediments along two traverses off South West Africa. Mar. Geol. v.18, pp.213–225.CrossRefGoogle Scholar
  19. Dembicki, H. J., Meinschein, W. G. and Hattin, D. E. (1976) Possible ecological and environmental significance of the predominance of evencarbon number C20-C30 n-alkanes. Geochim. Cosmochim. Acta, v.40, pp.203–208.CrossRefGoogle Scholar
  20. Dewing, K. and Sanei, H. (2009) Analysis of large thermal maturity datasets: Examples from the Canadian Arctic Islands. Internat. Jour. Coal Geol., v.77, pp.436–448CrossRefGoogle Scholar
  21. Didyk, B.M., Simoneit, B.R.T., Brassell, S.C. and Eglinton, G. (1978) Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, v.272, pp.216–222.CrossRefGoogle Scholar
  22. Dow, W.G. and Pearson, D.B. (1975) Organic matter in Gulf coastal sediments. Offshore Technology Conference, Dallas, USA.Google Scholar
  23. Dutta, S., Mallick, M., Mathews, R.P., Mann, U., Greenwood, P. F. and Saxena, R. (2010) Chemical composition and palaeobotanical origin of Miocene resins from Kerala-Konkan Coast, western India, Jour. Earth Syst. Sci., v.119, pp.711–716.CrossRefGoogle Scholar
  24. Eglinton, G. and Hamilton, R.J. (1963) The distribution of n-alkanes; In: Swain, T. (Ed.), Chemical Plant Taxonomy, Academic Press, London/New York, pp.187–217.CrossRefGoogle Scholar
  25. Eglinton, G. and Hamilton, R.J. (1967) Leaf epicuticular waxes. Science, v.156, pp.1322–1335.CrossRefGoogle Scholar
  26. Ensminger, A., Albrecht, P., Ourisson, G. and Tissot, B. (1977) Evolution of polycyclic alkanes under effect of burial (Early Toarcian shales, Paris basin); In: Campos, R. and Goni, J. (Eds.), Advances in organic geochemistry. Madrid (ENADIMSA), pp.375–391.Google Scholar
  27. Ensminger, A., van Dorsselaer, A., Spyckerelle, C., Albrecht, P. and Ourisson, G. (1974) Pentacyclic triterpenes of the hopane type as ubiquitous geochemical markers: origin and significance. In: Tissot B. and Bienner F., (Eds.), Advances in Organic Geochemistry. Editions Technip, Paris, pp.245–260.Google Scholar
  28. Ercegovac, M. and Kostiæ, A. (2006) Organic facies and palynofacies: nomenclature, classification and applicability for petroleum source rock evaluation. Internat. Jour. Coal Geol., v.68, pp.70–78.CrossRefGoogle Scholar
  29. Erik, N.Y., Özçelik, O. and Altunsoy, M. (2006) Interpreting Rock-Eval pyrolysis data using graphs of S2 vs. TOC: Middle Triassic-Lower Jurassic units, eastern part of SE Turkey; Jour. Petroleum Sci. Engg., v.53, pp.34–46.CrossRefGoogle Scholar
  30. Espitalié, J. (1986) Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance. In: Burrus, J. (ed.), Thermal Modeling in Sedimentary Basins Editions. Technip, Paris. pp.475–496.Google Scholar
  31. Espitalié, J., Deroo, G. and Marquis, F. (1985) La pyrolyse Rock-Eval et ses applications (deuxiéme partie). Rev. Inst. Fr. Pet., v.40, pp.755–784.CrossRefGoogle Scholar
  32. Fainstein, R., Mishra, S., Kalra, R., Shah, J., Radhakrishna, M. and Wygrala, B. P. (2012) Modern seismic imaging- deepwater realm offshore southwest India. 9th bienneal international conference and exposition on petroleum geophysics, 16–18 February, Hyderabad, India.Google Scholar
  33. Goñi, M. A. and Thomas, K. A. (2000) Sources and Transformations of Organic matter in surface soils and sediments from a tidal estuary (North Inlet, South Carolina, USA), Estauries, v.23, pp.548–564.CrossRefGoogle Scholar
  34. Goossens, H., Duren, C., De Leeuw, J. W. and Schenck, P. A. (1989) Lipids and their mode of occurrence in bacteria and sediments-2. Lipids in the sediment of a stratified, freshwater lake. Org. Geochem. v.14, pp.27–41.CrossRefGoogle Scholar
  35. Gorain, S. (2012) Mesozoic Prospectively of Kerala Konkan Offshore Basin. 9th Biennial International Conference and Exposition on Petroleum Geophysics, 16–18 February, Hyderabad, India.Google Scholar
  36. Grimalt, J., Albaigés, J., Alexander, G. and Hazai, I. (1986) Predominance of even carbon numbered normal-alkanes in coal seam samples of Nograd Basin (Hungary). Naturwissenschaften, v.73, pp.729–731.CrossRefGoogle Scholar
  37. Halloway, P.J. (1982) The chemical constitution of plant cutins. In: (Eds.) Cutler, D. F., Alvin, K. T. and Price, C. E. The Plant Cuticle. Linnean Society of London, Academic Press, London, pp.44–85.Google Scholar
  38. Hunt, J. M. (1979) Petroleum Geochemistry and Geology. Freeman, San Francisco, 617p.Google Scholar
  39. ICCP (2001) The new inertinite classification (ICCP system 1994). Fuel, v.80, pp.459–471.CrossRefGoogle Scholar
  40. ISO 7404-2 (2009) Methods for the Petrographic Analysis of Bituminous Coal and Anthracite-Part 2: Methods of Preparing Coal Samples. International Organization for Standardization, ISO, Geneva (8 pp.).Google Scholar
  41. ISO 7404-3 (2009) Methods for the Petrographic Analysis of Bituminous Coal and Anthracite-Part 3: Methods of Determining Maceral Group Composition. International Organization for Standardization, ISO, Geneva 4.Google Scholar
  42. ISO 7404-5 (2009) Methods for the Petrographic Analysis of Bituminous Coal and Anthracite-Part 5: Methods of Determining Microscopically the Reflectance of Vitrinite. International Organization for Standardization, ISO, Geneva (11 pp.).Google Scholar
  43. Jaffé, R., Mead, R., Hernandez, M.E., Peralba, M.C. and DiGuida, O.A. (2001) Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based study. Org. Geochem., v.32, pp.507–526.CrossRefGoogle Scholar
  44. Jasper, K., Krooss, B.M., Flajs, G., Hartkopf-Fröder, C. and Littke, R. (2009) Characteristics of type III kerogen in coal-bearing strata from the Pennsylvanian (Upper Carboniferous) in the Ruhr Basin, Western Germany: comparison of coals dispersed organic matter, kerogen concentrates and coal-mineral mixtures. Internat. Jour. Coal Geol., v.80, pp.1–19.CrossRefGoogle Scholar
  45. Kumaran, K.P.N., Limaye, R.B., Nair, K.M. and Padmalal, D. (2008) Palaeoecological and palaeoclimate potential of subsurface palynological data from the Late Quaternary sediments of South Kerala Sedimentary Basin, southwest India. Curr. Sci., v.95, pp.515–526.Google Scholar
  46. Karrer, W., Cherbuliez, E. and Eugster, C.H. (1977). Konstitution und Vorkommen der organischen Pflanzenstoffe. Erganzungs-band I; Birkhauser, Basel, Stuttgart, 1038 p.CrossRefGoogle Scholar
  47. Kern, A.K., Harzhauser, M., Reuter, M., Kroh, A., Piller, W.E. (2013) The Miocene coastal vegetation of southwestern India and its climatic significance. Palaeoworld, v.22, pp.119–132.CrossRefGoogle Scholar
  48. Krishnan, M.S. (1982) Geology of India and Burma. Higginbotham Pub. 6th Edition, 536pGoogle Scholar
  49. Kumar, A., Sreelathan, P. and Jayappa, K.S. (2009) Distribution of coastal cliffs in Kerala, India: their mechanisms of failure and related human engineering response. Environ. Geol., v.85, pp.815–832.CrossRefGoogle Scholar
  50. Lafargue, E., Marquis, F. and Pillot, D. (1998) Rock-Eval 6 applications in hydrocarbon exploration, production and soil contamination studies. Oil Gas Sci. Technol., v.53, pp.421–437.Google Scholar
  51. Langford, F.F. and Blanc-Valleron, M.M. (1990) Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG Bull., v.74, pp.799–804.Google Scholar
  52. Lüniger, L. and Schwark (2002) Characterization of sedimentary organic matter by bulk and molecular geochemical proxies: an example from Oligocene maar-type Lake Enspel, Germany. Sediment. Geol., v.148, pp.275–288.CrossRefGoogle Scholar
  53. Kumar, M., Srivastava, G., Spicer, R.A., Spicer, T.E.V., Mehrotra, R.C. and Mehrotra, N.C. (2012) Sedimentology, palynostratigraphy and palynofacies of the late Oligocene Makum Coalfield, Assam, India: A window on lowland tropical vegetation during the most recent episode of significant global warmth. Palaeogeo. Palaeoclimat. Palaeoecol., v.342–343, pp.143–162.CrossRefGoogle Scholar
  54. Mead, R., Xu, Y., Chong, J. and Jaffé, R. (2005) Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Org. Geochem., v. 36, pp.363–370.CrossRefGoogle Scholar
  55. Mendonça Filho, J.G., Menezes, T.R., Mendonça, J.O., Oliveira, A.D., Silva, T.F., Rondon, N.F. and Da Silva, F.S. (2012) Organic facies: palynofacies and organic geochemistry approaches. In: (Ed.) Panagiotaras, D. Geochemistry-Earth’s System Processes. InTech, pp. 211–248.Google Scholar
  56. Meyers, P.A. (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem., v.27, pp.213–250.CrossRefGoogle Scholar
  57. Meyers, P.A. and Ishiwatari, R. (1993) Lacrustine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem., v.20. pp.867–900.CrossRefGoogle Scholar
  58. Mishra, S., Verma, R., D’Silva, K., Banerjee, S., Bastia, R. and Nathaniel, D.M. (2011) Sub-basalt hydrocarbon prospectively in Kerala-Konkan offshore basin, India: a basin modeling approach. The 2ndSouth Asian Geosciences Conference and Exhibition, GeoIndia, 12–14 January, Greater Noida, New Delhi, India.Google Scholar
  59. Nair, K.M., Padmalal, D. and SajiKumar, S. (1998) Silting up of a Holocene megalagoon along Kerala coast; Nat. Seminar on Coastal Evolution: Processes and Products, CUSAT, Cochin. Abst. P.12.Google Scholar
  60. Nishimura, M. and Baker, E. W. (1986) Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments. Geochim. Cosmochim. Acta, v.50, pp.299–305.CrossRefGoogle Scholar
  61. Ourisson, G., Albrecht, P. and Rohmer, M. (1979) The hopanoids: palaeochemistry and biochemistry of a group of natural products; Pure Appl. Chem., v.51, pp.709–729.CrossRefGoogle Scholar
  62. Pacton, M., Gorin, G. E. and Vasconcelos, C. (2011) Amorphous organic matter-experimental data on formation and the role of microbes, Rev. Palaeobot. Palynol., v.166, pp.253–267.CrossRefGoogle Scholar
  63. Padmalal, D. Santhosh, S. Suresh Babu, D.S. (1995). Trace Metal Contents of Iron Sulfide Minerals from the Tertiary Carbonaceous Clays of Kerala. Jour. Geol. Soc. India v.46, pp.263–268.Google Scholar
  64. Pant, P. and Rastogi, R. P. (1979) The triterpenoids. Phytochemistry, v.18, pp.1095–1108.CrossRefGoogle Scholar
  65. Paul, S. and Dutta, S. (2015) Biomarker signatures of Early Cretaceous coals of Kutch Basin, western India. Curr. Sci., v.108, pp.211–217.Google Scholar
  66. Peters, K.E., Walters, C. and Moldowan, M. (2005) The biomarker guide. Cambridge University Press. New York, 1132 p.Google Scholar
  67. Peters, K.E. (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull., v.70, pp.318–329.Google Scholar
  68. Philp, R.P. (1985) Fossil fuel biomarkers: Applications and spectra. Methods in Geochemistry and Geophysics, v.23, pp.1–294.Google Scholar
  69. Poulose, K.V. and Narayanaswami, S. (1968) The Tertiaries of Kerala Coast. Mem. Geol. Surv. India, v.2, pp.300–308.Google Scholar
  70. Powell, T.G. and McKirdy, D.M. (1973) Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia. Nature, v.243, pp.37–39.Google Scholar
  71. Prabhakar Rao, G. (1968) Age of Warkalli Formation and the emergence of the present Kerala coast. Bull. Nat. Inst. Sci., v.38, pp.449–456.Google Scholar
  72. Prahl, F.G., Ertel, J.R., Goñï, M.A., Sparrow, M.A. and Eversmeyer, B. (1994) Terrestrial organic carbon contributions to sediments on the Washington margin. Geochim. Cosmochim. Acta, v.58, pp.3048–3055.CrossRefGoogle Scholar
  73. Püttmann, W. and Bracke, R. (1995) Extractable organic compounds in the clay mineral sealing of a waste disposal site. Org. Geochem., v.23, pp.43–54.CrossRefGoogle Scholar
  74. Raha, P.K. (1996) A revision of the stratigraphic sequence of the coastal sedimentary basin of Kerala. 15th Indian Colloquium of Micropalaeontology and Stratigraphy, Dehra Dun, pp.805–810.Google Scholar
  75. Raha, P.K., Sinha Roy, S.K. and Rajendran, C.P. (1983) A new approach to the lithostratigraphy of the Cenozoic sequence of Kerala. Jour. Geol. Soc. India, v.24, pp.325–342.Google Scholar
  76. Raju, S.V. and Mathur, N. (2013) Rajasthan lignite as a source of unconventional oil; Current Science, v.104, pp.725–757.Google Scholar
  77. Ramanujam, C.G.K. (1987) Palynology of the Neogene Warkalli beds of Kerala State in south India. J. Palaeont. Soc. India, v.32, pp.25–46.Google Scholar
  78. Rao, M.. (1995) Palynostratigraphic zonation and correlation of the Eocene-Early Miocene sequence in Alleppey District, Kerala, India. Rev. Palaeobot Palynol., v.86, pp.325–348.CrossRefGoogle Scholar
  79. Rao, M.R. and Rajendran, C. P. (1996) Palynological investigations of Tertiary lignite and associated sediments from Cannanore. Kerala Basin, India. Palaeobotanist, v.43(2), pp. 63–82.Google Scholar
  80. Rao, K.P. and Ramanujam, C.G.K. (1975) A palynological approach to the study of Quilon beds of Kerala State in South India, Curr. Sci., v.44, pp.730–732.Google Scholar
  81. Regnery, J., Püttmann, W., Koutsodendris, A., Mulch, A. and Pross, J. (2013) Comparison of the paleoclimatic significance of higher land plant biomarker concentrations and pollen data: A case study of lake sediments from the Holsteinian interglacial. Org. Geochem., v.61, pp.73–84.CrossRefGoogle Scholar
  82. Reuter, M., Kern, A. K., Harzhauser, M., Kroh, A. and Piller, W. E. (2013) Global warming and South Indian monsoon rainfall- lessons from the Mid-Miocene. Gondwana Res., v.23, pp.1172–1177.CrossRefGoogle Scholar
  83. Rice, D.D. and Claypool, G.E. (1981) Generation, accumulation, and resource potential of biogenic gas. AAPG Bull., v.65, pp.5–25.Google Scholar
  84. Rohmer, M., Bisseret, P. and Neunlist, S. (1992) The hopanoids, procaryotic triterpenoids and precursors of ubiquitous molecular fossils; In: Moldowan, J. M., Albrecht, P., Philp, R. P. (Eds.), Biological Markers in Sediments and Petroleum Prentice Hall, Englewood Cliffs, New Jersey, pp. 1–17.Google Scholar
  85. Rohmer, M., Dastillung, M. and Ourisson, G. (1980) Hopanoids fromC30 to C35 in recent muds, chemical markers and bacterial activity. Naturewissenschaften, v.67, pp.456–458.CrossRefGoogle Scholar
  86. Roushdy, M.I., El Nady, M.M., Mostafa, Y.M., El Gendy, N. and Ali, H.R. (2010) Biomarkers Characteristics of Crude Oils from some Oilfields in the Gulf of Suez, Egypt. J. Am. Sci., v.6, pp.911–925.Google Scholar
  87. Ryu, I.C. (2008) Source rock characterization and petroleum systems of Eocene Tyee basin, southern Oregon Coast Range, USA. Org. Geochem., v.39, pp.75–90.CrossRefGoogle Scholar
  88. Sari, A. and Aliyev, S. A. (2006) Organic geochemical characteristics of the Paleocene-Eocene oil shales in the Nallýhan Region, Ankara, Turkey. Jour. Pet. Sci. Engg., v.53, pp.123–134.CrossRefGoogle Scholar
  89. Scheidt, G. and Littke, R. (1989) Comparative organic petrology of interlayered sandstones, siltstones, mudstones and coals in the Upper Carboniferous Ruhr basin, Northwest Germany, and their thermal history and methane generation. Geologische Rundschau, v.78, pp.375–390.CrossRefGoogle Scholar
  90. Shah, J., Fainstein, R., Broetz, R.J. and Wygrala, B. (2009) Hydrocarbons in sub-basalt sediments-Basin modeling of Kerala-Konkan Basin, offshore west India. 71st EAGE Conference and Exhibition, Amsterdam, The Netharland, pp.3050–3056.Google Scholar
  91. Shimoyama, A. and Johns, W.D. (1972) Formation of alkanes from fatty acids in the presence of CaCO3. Geochim. Cosmochim. Acta, v.36, pp.87–91.CrossRefGoogle Scholar
  92. Simoneit, B.R.T. (1977a) Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance; Geochim. Cosmochim. Acta, v.41, pp.463–476.CrossRefGoogle Scholar
  93. Simoneit, B. R. T. (1977b) The black sea, a sink for terrigenous lipids. Deep Sea Res., v.24, pp.813–830.CrossRefGoogle Scholar
  94. Simoneit, B.R.T. (1986) Cyclic terpenoids of the geosphere; In: Johns, R.B. (Ed.), Biological Markers in the Sedimentary Record, Elsevier, Amsterdam, pp.43–99.Google Scholar
  95. Singh, A., Mahesh, S., Singh, H., Tripathi, S. K. M. and Singh, B. D. (2013) Characterization of Mangrol lignite (Gujarat), India: Petrography, palynology and palynofacies. Internat. Jour. Coal Geol., v.120, pp.82–94.CrossRefGoogle Scholar
  96. Singh, A., Thakur, O. P. and Singh, B. D. (2012) Petrographic and depositional characteristics of Tadkeshwar lignite deposits (Cambay Basin) Gujarat; Jour. Geol. Soc. India, v.80, pp.329–340.CrossRefGoogle Scholar
  97. Singh. H. P. and Rao. M. R. (1990) Tertiary palynology of Kerala Basin-An overview. In Jain, K. P and Tiwari, R. S. (Eds), Proc. Symp. ‘Vistas in Indian Palaeobotany”. Palaeobotanist, v.38, pp. 256–2692.Google Scholar
  98. Singh, N.K. and Lal, N.K. (1993) Geology and Petroleum Prospects of Konkan-Kerala Basin. Proc. Second Seminar on Petroliferous Basins of India, Dehradun, v.2, pp.461–469.Google Scholar
  99. Singh, P.K. and Sen, K. (2012). 2-D Velocity Structure in Kerala-Konkan Basin Using Traveltime Inversion of Seismic Data. Jour. Geol. Soc. India, v.79, pp.53–60.CrossRefGoogle Scholar
  100. Singh, P. K., Singh, V. K., Rajak, P. K., Singh, M. P., Naik, A. S., Raju, S. V., Mohanty, D. (2015) Eocene lignites from Cambay Basin, Western India: An excellent source of hydrocarbon. Geosciences Frontiers, v.7, pp.707–864.Google Scholar
  101. Singh, V.P., Singh, B.D., Singh, A., Singh, M.P., Mathews, R.P., Dutta, S., Mendhe, V.A., Mahesh, S., Mishra, S. (2017) Depositional palaeoenvironment and economic potential of Khadsaliya lignite deposits (Saurashtra Basin), western India: based on petrographic, palynofacies and geochemical characteristics. Internat. Jour. Coal Geol., v.71, pp.223–242.CrossRefGoogle Scholar
  102. Sinninghe Damste, J.S., Schouten, S. and Volkman, J.K. (2014) C27-C30 neohop 13(18)-enes and their saturated and aromatic derivatives in sediments: Indicators for diagenesis and water column stratification, Geochim. Cosmochim. Acta., v.133, pp.402–421.CrossRefGoogle Scholar
  103. Soman, K. (1997) Geology of Kerala. Geol. Soc. India, Bangalore, 280p.Google Scholar
  104. Stefanova, M., Magnier, C. and Velinova, D. (1995) Biomarker assemblage of some Miocene aged Bulgarian lignite lithotypes. Org. Geochem., v.23, pp.1067–1084.CrossRefGoogle Scholar
  105. Summerhayes, C.P. (1983) Sedimentation of organic matter in upwelling regimes. In: Thiede, J. and Suess, E. (Eds.), Coastal Upwelling: Its Sediments Record Part B: Sedimentary Records of Ancient Coastal Upwelling New York. Plenum Press, pp.301–316.Google Scholar
  106. Suárez-Ruiz, I., Flores, D., Mendonça Filho, J.G. and Hackley, P. C. (2012) Review and update of the applications of organic petrology: Part 1, geological applications. Internat. Jour. Coal Geol., v.99, pp.54–112.CrossRefGoogle Scholar
  107. Sýkorová, I., Pickel, W., Christanis, K., Wolf, M., Taylor, G.H. and Flores, D. (2005) Classification of huminite-ICCP System 1994. Internat. Jour. Coal Geol., v.62, pp.85–106.CrossRefGoogle Scholar
  108. Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R. and Robert, P. (1998) Organic Petrology. Gebrüder Borntraeger, Berlin, 704 p.Google Scholar
  109. Ten Haven, H. L., de Leeuw, J. W., Rullkötter, J. and Sinninghe Damste, J. S. (1987) Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature, v.330, pp.641–643.CrossRefGoogle Scholar
  110. Ten Haven, H. L., Peakman, T. M. and Rullkötter, J. (1992) Ä2 -Triterpenes: early intermediates in the diagenesis of terrigenous triterpenoids. Geochim. Cosmochim. Acta, v.56, pp.1993–2000.CrossRefGoogle Scholar
  111. Tissot, B.P. and Welte, D.H. (1978) Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag. Berlin, Heidelberg, New York, 538p.CrossRefGoogle Scholar
  112. Tissot, B. and Pelet, R. (1981) Sources and fate of organic matter in ancient sediments. Oceanologica Acta, Special Issue, Actes 26th Congress International de Géologie, Colloque, Géologie des Oceans, Paris, pp.97–103Google Scholar
  113. Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrences. 2nd Edition. Springer, Berlin, 699p.CrossRefGoogle Scholar
  114. Trendel, J.M., Lohmann, F., Kintzinger, J.P., Albrecht, P., Chiaroni, A., Riche, C., Cesario, M., Guilhem, J. and Pascard, C. (1989) Identification of des-a-triterpenoid hydrocarbons occurring in surface sediments. Tetrahedron, v.45, pp.4457–4470.CrossRefGoogle Scholar
  115. Tyson, R.V. (1995) Sedimentary Organic Matter; Organic Facies and Palynofacies; Chapman and Hall, London, 615p.CrossRefGoogle Scholar
  116. Varadarajan, K. and Nair, K.M. (1978). Stratigraphy and Structure of Kerala Tertiary Basin. Jour. Geol. Soc. India v.19, pp.217–220.Google Scholar
  117. Volkman, J.K., Maxwell, J.R. (1986) Acyclic isoprenoids as biological markers. In: Johns, R.B. (Ed.), Biological Markers in the Sedimentary Record. Elsevier, Amsterdam, pp. 1–42.Google Scholar
  118. Wakeham, S. G., Peterson, M. L., Hedges, J. I. and Lee, C. (2002) Lipid biomarker fluxes in the Arabian Sea, with a comparison to the equatorial Pacific Ocean. Deep-Sea Res. II, v.49, pp.2265–2301.CrossRefGoogle Scholar
  119. Welte, D. H. and Ebhardt, G. (1968) Distribution of long chain n-paraffins and n-fatty acids in sediments from the Persian Gulf. Geochim. Cosmochim. Acta, v.32, pp.465–466.CrossRefGoogle Scholar
  120. Welte, D. H. and Waples, D. W. (1973) Uber die Bevorzugung geradzahliger n-alkane in Sedimentgesteinen. Naturwissenschaften, v.60, pp.516–517.CrossRefGoogle Scholar
  121. Wolff, G.A., Trendel, J.M. and Albrecht, P. (1989) Novel monoaromatic triterpenoid hydrocarbons occurring in sediments; Tetrahedron, v.45, pp.6721–6728.CrossRefGoogle Scholar
  122. Wüst, R.A.J., Hawke, M.I. and Bustin, R.M. (2001) Comparing maceral ratios from tropical peat lands with assumptions from coal studies: do classic coal petrographic interpretation methods have to be discarded? Internat. Jour. Coal Geol., v.48, pp.115–132.CrossRefGoogle Scholar
  123. Zdravkov, A., Bechtel, A., Sachsenhofer, R.F., Kortenski, J. and Gratzer, R. (2011) Vegetation differences and diagenetic changes between two Bulgarian lignite deposits-Insights from coal petrology and biomarker composition. Org. Geochem., v.42, pp.237–254.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2018

Authors and Affiliations

  • Runcie P. Mathews
    • 1
  • Bhagwan D. Singh
    • 1
  • Vikram P. Singh
    • 1
  1. 1.Birbal Sahni Institute of PalaeosciencesLucknowIndia

Personalised recommendations