Advertisement

Journal of the Geological Society of India

, Volume 92, Issue 4, pp 393–403 | Cite as

Geochemical Evidences for Possible Absence of Cu-Sulfide Deposits in the Deccan Volcanic Province, India

  • More B. Laxman
  • K. Vijaya Kumar
Research Articles
  • 29 Downloads

Abstract

Continental flood basalt provinces (CFBs) are important hosts for large-scale Cu-sulfide deposits. However, sulfide mineralization is yet to be discovered, if any, in the end-Cretaceous Deccan volcanic province, India. In the present study, geochemical evidences for the possible absence of Cu-sulfide deposits associated with the Deccan basalts by analyzing and comparing the geochemistries of the Deccan and Siberian CFBs are provided. The Fe-rich nature and high fO2 conditions did not favour sulfide saturation at any stage of magma evolution in the Deccan province. Crustal contamination of the Deccan magmas also did not increase the sulfur budget. The most contaminated basalts of Bushe and Poladpur formations of the Deccan province do not show any depletion in the copper contents compared to other formations. In the absence of sulfide saturation, copper behaved as an incompatible element in the Deccan magmas in contrast to the Siberian basalts, in which copper behaved as a compatible element during magma evolution due to sulfide saturation consequently formed world-class copper sulfide deposits. It is demonstrated that the lithosphere- and asthenosphere-derived Deccan magmas have similar Cu abundances thereby suggesting that the Cu-sulfide deposits associated with the CFBs are process-controlled rather than source-controlled. Although Cu-sulfide deposits may not have formed, the geochemical patterns suggest favourable conditions for native copper mineralization in the Deccan volcanic province. In the present study, a set of geochemical proxies that can be utilized as preliminary exploration tools for Cu-sulfide mineralization in the CFBs is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, P.O. and Thomas, H. (2011) Copper in Deccan basalts (India): review of the abundance and patterns of distribution. Bol. Inst. Fisio. Geol., v.79–81, pp.107–112.Google Scholar
  2. Allegre, C.J., Birck, J.L., Capmas, F. and Courtillot, V. (1999) Age of the Deccan traps using 187Re-187Os systematics. Earth Planet. Sci. Lett., v.170, pp.197–204.CrossRefGoogle Scholar
  3. Arndt, N., Lesher, C.M. and Czamanske, G.K. (2005) Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits. Econ. Geol., 100th Anniversary volume, pp.5–24.Google Scholar
  4. Arndt, N.T., Czamanske, G.K., Walker, R.J., Chauvel, C. and Fedorenko, V.A. (2003) Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu-Ni-PGE sulfide deposits. Econ. Geol., v.98, pp.495–515.Google Scholar
  5. Baksi, A.K. (1994) Geochronological studies on whole-rock basalts, Deccan Traps, India: evaluation of the timing of volcanism relative to the KT boundary. Earth Planet. Sci. Lett., v.121, pp.43–56.CrossRefGoogle Scholar
  6. Barnes, S.J. and Lightfoot, P.C. (2005) Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum-group contents. Econ. Geol., 100th Anniversary volume, pp.173–213.Google Scholar
  7. Beane, J.E., Turner, C.A., Hooper, P.R., Subbarao, K.V. and Walsh, J.N. (1986) Stratigraphy, composition and form of the Deccan basalts, Western Ghats, India. Bull. Volcanol., v.48, pp.61–83.CrossRefGoogle Scholar
  8. Brown, A.C. (2006) Genesis of native copper lodes in the Keweenaw District, northern Michigan: a hybrid evolved meteoric and metamorphogenic model. Econ. Geol., v.101, pp.1437–1444.CrossRefGoogle Scholar
  9. Brügmann, G.E., Naldrett, A.J., Asif, M., Lightfoot, P.C., Gorbachev, N.S. and Fedorenko, V.A. (1993) Siderophile and chalcophile metals as tracers of the evolution of the Siberian Trap in the Noril’sk region, Russia. Geochim. Cosmochim. Acta, v.57, pp.2001–2018.CrossRefGoogle Scholar
  10. Buchanan, D.L. and Nolan, J. (1979) Solubility of sulfur and sulfide immiscibility in synthetic tholeiitic melts and their relevance to Bushveld Complex rocks. Canadian Mineral., v.17, pp.483–494.Google Scholar
  11. Campbell, I.H., Czamanske, G.K., Fedoernko, V.A., Hill, R.I., Stepanov, V.A. and Kunilov, V.E. (1992) Synchronism of the Siberian traps and the Permian-Triassic boundary. Science, v.258, pp.1760–1763.CrossRefGoogle Scholar
  12. Canil, D. 1999. Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox state of mantle source regions for primary magmas. Geochim. Cosmochim. Acta, v.63, pp.557–572.CrossRefGoogle Scholar
  13. Carroll, M.R. and Rutherford, M.J. (1987) The stability of igneous anhydrite—experimental results and implications for sulfur behavior in the 1982 El Chichon trachyandesite and other evolved magmas. Jour. Petrol., v.28, pp.781–801.CrossRefGoogle Scholar
  14. Carroll, M.R. and Webster, J.D. (1994) Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas, In: M.R. Carroll and J.R. Holloway (Ed.), Volatiles in Magmas: Reviews in Mineralogy, v.30, pp.231–279.Google Scholar
  15. Chakrabarti, R. and Basu, A.R. (2006) Trace element and isotopic evidence for Archean basement in the Lonar crater impact breccias, Deccan Volcanic Province. Earth Planet. Sci. Lett., v.247, pp.197–211.CrossRefGoogle Scholar
  16. Cornwall, H.R. (1956) A summary of ideas on the origin of native copper deposits. Econ. Geol., v.51, pp.615–631.CrossRefGoogle Scholar
  17. Courtillot, V., Besse, J., Vandamme, D., Montigny, R., Jaeger, J.J. and Cappetta, H. (1986) Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth Planet. Sci. Lett., v.80, pp.361–374.CrossRefGoogle Scholar
  18. Courtillot, V., Davaille, A., Besse, J. and Stock, J. (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett., v.205, pp.295–308.CrossRefGoogle Scholar
  19. Crocket, J.H. (2002) Platinum-group element geochemistry of mafic and ultramafic rocks. In: L.J. Cabri (Ed.), The geology, geochemistry, mineralogy, and mineral beneficiation of platinum-group elements: London, Ontario, Canada, Canadian Inst. Mining Metal. Petrol, v.54, pp.177–210.Google Scholar
  20. Czamanske, G.K., Wooden, J.L., Zientek, M.L., Fedorenko, V.A., Zen’ko, T.E., Kent, J., King, B.S.W., Knight, R.J. and Siems, D.F. (1994) Geochemical and isotopic constraints on the petrogenesis of the Noril’sk-Talnakh ore-forming system. Ont. Geol. Surv. Spec. Publ., v.5, pp.313–342.Google Scholar
  21. Duncan, R.A. and Pyle, D.G. (1988) Rapid eruption of the Deccan flood basalts, western India. Nature, v.333, pp.841–843.CrossRefGoogle Scholar
  22. Dunn, J.A. and Jhingran, A.G. (1965) “Copper”. Bull. Geol. Surv. India, Econ. Geol., v.23, pp.1–204.Google Scholar
  23. Farley, K.N. (1994) Oxidation state and sulfur concentrations in Lau Basin basalts. In: Proc. ODP, Sci. Results, TX (Ocean Drilling Program), v.135, pp.603–613.Google Scholar
  24. Fedorenko, V.A. (1994) Evolution of magmatism as reflected in the volcanic sequence of the Noril’sk region. In: P.C. Lightfoot and A.J. Naldrett. (Ed.), The Sudbury-Noril’sk Symposium. Special Volume Ont. Geol. Surv., v.5, pp.171–183.Google Scholar
  25. Gaetani, G.A. and Grove, T.L. (1997) Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth and Mars. Geochim. Cosmochim. Acta, v.61, pp.1829–1846.CrossRefGoogle Scholar
  26. Gangopadhyay, A., Sen, G. and Keshav, S. (2003) Experimental crystallization of Deccan basalts at low pressure: effect of contamination on phase equilibrium. Indian Jour. Geol., v.75, pp.54–71.Google Scholar
  27. Greaney, A.T., Rudnick, R.L., Helz, R.T., Gaschnig, R.M., Piccoli, P.M. and Ash, R.D. (2017) The behavior of chalcophile elements during magmatic differentiation as observed in Kilauea Iki lava lake, Hawaii. Geochim. Cosmochim. Acta, v.210, pp.71–96.CrossRefGoogle Scholar
  28. Griffin, W.L., Begg, G.C. and O’reilly, S.Y. (2013) Continental-root control on the genesis of magmatic ore deposits. Nature Geoscience, v.6, pp.905–910.CrossRefGoogle Scholar
  29. Hanson, G.N. (1980) Rare earth elements in petrogenetic studies of igneous systems. Ann. Rev. Earth Planet. Sci., v.8, pp.371–406.CrossRefGoogle Scholar
  30. Hart, S.R. and Dunn, T. (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib. Mineral. Petrol., v.113, pp.1–8.CrossRefGoogle Scholar
  31. Haughton, D.R., Roeder, P.L. and Skinner, B.J. (1974) Solubility of sulfur in mafic magmas. Econ. Geol., v.69, pp.451–467.CrossRefGoogle Scholar
  32. Hawkesworth, C.J., Lightfoot, P.C., Fedorenko, V.A., Blake, S., Naldrett, A.J., Doherty, W. and Gorbachev, N.S. (1995) Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos, v.34, pp.61–88.CrossRefGoogle Scholar
  33. Imai, A., Listanco, E.L. and Fujii, T. (1993) Petrologic and sulfur isotopic significance of highly oxidized and sulfur-rich magma of Mt. Pinatubo, Philippines. Geology, v.21, pp.699–702.CrossRefGoogle Scholar
  34. Jay, A.E. and Widdowson, M. (2008) Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: implications for eruptive extent and volumes. Jour. Geol. Soc. London, v.165, pp.177–188.CrossRefGoogle Scholar
  35. Jensen, A. (1982) The distribution of Cu across three basaltic lava flows from the Faeroe Islands. Bull. Geol. Soc. Denmark, v.31, pp.1–10.Google Scholar
  36. Jerram, D.A. and Widdowson, M. (2005) The anatomy of Continental flood basalt provinces: geological constraints on the processes and products of flood volcanism. Lithos, v.79, pp.385–405.CrossRefGoogle Scholar
  37. Jugo, P.J. (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology, v.37, pp.415–418.CrossRefGoogle Scholar
  38. Jugo, P.J., Luth, R.W. and Richards, J.P. (2005) Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochim. Cosmochim. Acta, v.69, pp.497–503.CrossRefGoogle Scholar
  39. Keays, R.R. (1995) The role of komatiitic and picritic magmatism and Ssaturation in the formation of ore deposits. Lithos, v.34, pp.1–18.CrossRefGoogle Scholar
  40. Keays, R.R. and Lightfoot, P.C. (2007) Siderophile and chalcophile metal variations in Tertiary picrites and basalts from West Greenland with implications for the sulphide saturation history of continental flood basalt magmas. Mineral. Deposita, v.42, pp.319–336.CrossRefGoogle Scholar
  41. Keays, R.R. and Lightfoot, P.C. (2010) Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits: evidence from chalcophile element signatures of Siberian and Deccan Trap basalts. Mineral. Deposita, v.45, pp.241–257.CrossRefGoogle Scholar
  42. Krishnamurthy, P. (2015) Chalcophile element depletion in lower Deccan trap formations and implications for Cu-Ni-PGE sulphide mineralization in the Deccan Traps, India akin to those of Norilsk-Talnakh, Siberian traps, Russia. Jour. Geol. Soc. India, v.85, pp.411–418.CrossRefGoogle Scholar
  43. Krivolutskaya, N.A. (2011) Formation of PGM-Cu-Ni deposits in the process of evolution of flood-basalt magmatism in the Noril’sk region. Geol. Ore Deposits, v.53, pp.309–339.CrossRefGoogle Scholar
  44. Laubier, M., Grove, T.L. and Langmuir, C.H. (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet. Sci. Lett., v.392, pp.265–278.CrossRefGoogle Scholar
  45. Lee, C.T.A., Luffi, P., Chin, E.J., Bouchet, R., Dasgupta, R., Morton, D.M., Le Roux, V., Yin, Q.Z. and Jin, D. (2012) Copper systematics in arc magmas and implications for crust-mantle differentiation. Science, v.336, pp.64–68.CrossRefGoogle Scholar
  46. LeHuray, A.P. (1989) Native copper in ODP Site 642 tholeiites. In: O. Eldholm, J. Thiede, E. Taylor, et al. (Eds.), Proc. ODP, Sci. Results, College Station, TX (Ocean Drilling Program), v.104, pp. 411–417.Google Scholar
  47. Lesher, C.M. and Campbell, I.H. (1993) Geochemical and fluid dynamic modeling of compositional variations in Archean komatiite-hosted nickel sulfide ores in Western Australia. Econ. Geol., v.88, pp.804–816.CrossRefGoogle Scholar
  48. Lesher, C.M., Lee, R.F., Groves, D.I., Bickle, M.J. and Donaldson, M.J. (1981) Geochemistry of komatiites from Kambalda, Western Australia: 1. Chalcophile element depletion—a consequence of sulfide liquid separation from komatiitic magmas. Econ. Geol., v.76, pp.1714–1728.CrossRefGoogle Scholar
  49. Li, C. and Naldrett, A.J. (1999) Geology and petrology of the Voisey’s Bay intrusion: reaction of olivine with sulfide and silicate liquids. Lithos, v.47, pp.1–31.CrossRefGoogle Scholar
  50. Li, C., Ripley, E.M. and Naldrett, A.J. (2009) A new genetic model for the giant Ni-Cu-PGE sulfide deposits associated with the Siberian flood basalts. Econ. Geol., v.104, pp.291–301.CrossRefGoogle Scholar
  51. Lightfoot, P.C. and Keays, R.R. (2005) Siderophile and chalcophile metal variations in flood basalts from the Siberian trap, Noril’sk region. Implications for the origin of the Ni-Cu-PGE sulfide ores. Econ. Geol., v.100, pp.439–462.CrossRefGoogle Scholar
  52. Lightfoot, P.C., Hawkesworth, C.J., Hergt, J., Naldrett, A.J., Gorbachev, N.S. and Fedorenko, V.A. (1993) Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia. Contrib. Mineral. Petrol., v.114, pp.171–188.CrossRefGoogle Scholar
  53. Lightfoot, P.C., Naldrett, A.J., Gorbachev, N.S., Fedorenko, V.A., Hawkesworth, C.J., Hergt, J. and Doherty, W. (1994) Chemostratigraphy of Siberian trap lavas, Noril’sk District, Russia: implications for the source of flood basalt magmas and their associated Ni-Cu mineralization. Ont. Geol. Surv. Spec. Publ., v.5, pp.283–312.Google Scholar
  54. Lightfoot, P.C., Naldrett, A.J., Gorbachev, N.S., Doherty, W. and Fedorenko, V.A. (1990) Geochemistry of the Siberian Trap of the Noril’sk area, USSR, with implications for the relative contributions of crust and mantle to flood basalt magmatism. Contrib. Mineral. Petrol., v.104, pp.631–644.CrossRefGoogle Scholar
  55. MacLean, W.H. (1969) Liquidus phase relations in the FeS-FeO-Fe2O3-SiO2 system and their application in geology. Econ. Geol., v.64, pp.865–884.CrossRefGoogle Scholar
  56. Mahoney, J.J., Sheth, H.C., Chandrasekharam, D. and Peng, Z.X. (2000) Geochemistry of flood basalts of the Toranmal section, northern Deccan Traps, India: implications for regional Deccan stratigraphy. Jour. Petrol., v.41, pp.1099–1120.CrossRefGoogle Scholar
  57. Maier, W.D., Li, C. and De Waal, S.A. (2001) Why are there no major Ni-Cu sulfide deposits in large layered mafic-ultramafic intrusions? Canadian Mineral., v.39, pp.547–556.CrossRefGoogle Scholar
  58. Mavrogenes, J.A. and O’Neill, H.S.C. (1999) The relative effects of pressure temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim. Cosmochim. Acta, v.63, pp.1173–1180.CrossRefGoogle Scholar
  59. Mungall, J.E., Hanley, J.J., Arndt, N.T. and Debecdelievre, A. (2006) Evidence from meimechites and other low-degree mantle melts for redox controls on mantle-crust fractionation of platinum-group elements. Proc. Natl. Acad. Sci. USA, v.103, pp.12695–12700.CrossRefGoogle Scholar
  60. Nadeau, O., Stix, J. and Williams-Jones, A.E. (2013) The behavior of Cu, Zn and Pb during magmatic-hydrothermal activity at Merapi volcano, Indonesia. Chem. Geol., v.342, pp.167–179.CrossRefGoogle Scholar
  61. Naldrett, A.J. (1992) A model for the Ni-Cu-PGE ores of the Noril’sk region and its application to other areas of flood basalt. Econ. Geol., v.87, pp.1945–1962.CrossRefGoogle Scholar
  62. Naldrett, A.J. (1999) World-class Ni-Cu-PGE deposits: key factors in their genesis. Mineral. Deposita, v.34, pp.227–240.CrossRefGoogle Scholar
  63. Naldrett, A.J. (2004) Magmatic Sulfide Deposits. Geology, Geochemistry, and Exploration, Springer, Berlin, 727pp.CrossRefGoogle Scholar
  64. Naldrett, A.J. (2010) Secular variation of magmatic sulfide deposits and their source magmas. Econ. Geol., v.105, pp.669–688.CrossRefGoogle Scholar
  65. Naldrett, A.J. and Lightfoot, P.C. (1993) A model for giant magmatic sulphide deposits associated with flood basalts. Soc. Econ. Geol. Spec. Publ. No. 2, pp.81–124Google Scholar
  66. Naldrett, A.J. and Lightfoot, P.C. (1999) Ni-Cu-PGE deposits of the Noril’sk region, Siberia: their formation in conduits for flood basalt volcanism. In: R.R. Keays, C.M. Lesher, P.C. Lightfoot and C.E.G. Farrow (Eds.), Dynamic processes in magmatic ore deposits and their application in mineral exploration, Geol. Asso. Canada Short Course Notes, v.3, pp.195–250Google Scholar
  67. Naldrett, A.J., Fedorenko, V.A., Lightfoot, P.C., Gorbachev, N.S., Doherty, W., Asif, M., Lin, S. and Johan, Z. (1995) A model for the formation of the Ni-Cu-PGE deposits of the Noril’sk region. Economic Geology in Europe and Beyond, British Geol. Surv., pp.18–36.Google Scholar
  68. Naldrett, A.J., Fedorenko, V.A., Lightfoot, P.C., Kunilov, V.I., Gorbachev, N.S., Doherty, W. and Johan, Z. (1996) Controls on the composition of Ni-Cu sulfide deposits as illustrated by those at Noril’sk, Siberia. Econ. Geol., v.91, pp.751–773.CrossRefGoogle Scholar
  69. Naldrett, A.J., Lightfoot, P.C., Fedorenko, V.A., Doherty, W. and Gorbachev, N.S. (1992) Geology and geochemistry of intrusions and flood basalts of the Noril’sk region, USSR, with implication for the origin of the Ni-Cu ores. Econ. Geol., v.87, pp.975–1004.CrossRefGoogle Scholar
  70. Pinto, V.M., Hartmann, L.A., and Wildner, W. (2011) Epigenetic hydrothermal origin of native copper and supergene enrichment in the Vista Alegre district, Paraná basaltic province, southernmost Brazil. Int. Geol. Rev., v.53, pp.1163–1179.CrossRefGoogle Scholar
  71. Plank, T. and Langmuir, C.H. (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., v.145, pp.325–394.CrossRefGoogle Scholar
  72. Rad’ko, V.A. (1991) Model of dynamic differentiation of intrusive Traps at the Northwestern Siberian Trap. Geol. Geofiz., v.32, pp.19–27.Google Scholar
  73. Radhakrishna, B.P. and Pandit S.A. (1973) On the occurrences of native copper in Deccan Traps. Dept. Mines Geol., Gov. Karnataka Rep., v.73, pp.283–286.Google Scholar
  74. Raja Rao, C.S., Sahasrabudhe, Y.S., Deshmukh, S.S. and Raman, R. (1978) Distribution, structure and petrography of the Deccan Trap, India. Report Geological Survey of India, 43pp.Google Scholar
  75. Rajamani, V. and Naldrett, A.J. (1978) Partitioning of Fe, Co, Ni and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits. Econ. Geol., v.73, pp.82–93.CrossRefGoogle Scholar
  76. Ray, R.., Shukla, A.D., Sheth, H.C., Ray, J.S., Duraiswami, R.A., Vanderkluysen, L. and Mallik, J. (2008) Highly heterogeneous Precambrian basement under the central Deccan Traps, India: direct evidence from xenoliths in dykes. Gond. Res., v.13, pp.375–385.CrossRefGoogle Scholar
  77. Rehkämper, M., Halliday, A.N., Fitton, J.G., Lee, D.-C., Wieneke, M. and Arndt, N. T. (1999) Ir, Ru, Pt, and Pd in basalts and komatiites: new constraints for the geochemical behavior of the platinum-group elements in the mantle. Geochim. Cosmochim. Acta, v.63, pp.3915–3934.CrossRefGoogle Scholar
  78. Ripley, E.M., Brophy, J.G. and Li, C. (2002) Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe. Geochim. Cosmochim. Acta, v.66, pp.2791–2800.CrossRefGoogle Scholar
  79. Roy, B.C. (1953) A Note on the occurrence of native copper in Deccan traps near Bhayavadar, Madhya Saurashtra. Geol. Surv. India, GSI-CHQ-12961, pp.1–8.Google Scholar
  80. Rudnick, R.L. and Gao, S. (2003) Composition of the continental crust. In: H.D. Holland, and K.K. Turekian (Eds.), The Crust. Treatise on Geochemistry, Elsevier, Amsterdam, v.3, pp.1–64.Google Scholar
  81. Segev, A. (2002) Flood basalts, continental break-up and the dispersal of Gondwana: evidence for periodic migration of upwelling mantle flows (plumes). EGU Stephen Mueller Spec. Publ. Series, v.2, pp.171–191.CrossRefGoogle Scholar
  82. Sen, G. (1986) Mineralogy and petrogenesis of the Deccan Trap lava flows around Mahabaleshwar, India. Jour. Petrol. v.27, pp.627–663CrossRefGoogle Scholar
  83. Sen, G. (2001) Generation of Deccan trap magmas. Proc. Indian Acad. Sci. Earth and Planet. Sci., v.110, pp.409–432.Google Scholar
  84. Seward, T.M. (1971) The distribution of transition elements in the system CaMgSi2O6-Na2Si2O5-H2O at 1000 bars pressure. Chem. Geol., v.7, pp.73–95.CrossRefGoogle Scholar
  85. Sheth, H.C. (2005) From Deccan to Réunion: no trace of a mantle plume. Geol. Soc. Amer. Spec. Papers, v.388, pp.477–501.Google Scholar
  86. Sillitoe, R.H. (1997) Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Jour. Earth Sci., v.44, pp.373–388.CrossRefGoogle Scholar
  87. Song, X.Y., Zhou, M.F., Cao, Z.M., Sun, M. and Wang, Y.L. (2003) Ni-Cu-(PGE) magmatic sulfide deposits in the Yangliuping area, Permian Emeishan igneous province, SW China. Mineral. Deposita, v.38, pp.831–843.CrossRefGoogle Scholar
  88. Stanton, R.L. (1994) Ore elements in arc lavas. Oxford Monographs Geology and Geophysics, v.29, 391pp.Google Scholar
  89. Sun, S.-S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders, and M.J. Norry (Eds.), Magmatism in the Ocean Basins. Geol. Soc. London, Spec. Publ., v.42, pp.313–345.Google Scholar
  90. Venkatesan, T. R., Pande, K. and Gopalan, K. (1993) Did Deccan volcanism pre-date the Cretaceous/Tertiary transition? Earth Planet. Sci. Lett., v.119, pp.181–189.CrossRefGoogle Scholar
  91. Vijaya Kumar, K., Chavan, C., Sawant, S., Nagaraju, K., Kanakdande, P., Patode, S., Deshpande, K., Krishnamacharyulu, S.K.G., Vaideswaran, T. and Balaram, V. (2010) Geochemical investigation of a semi-continuous extrusive basaltic section from the Deccan Volcanic Province, India: implications for the mantle and magma chamber processes. Contrib. Mineral. Petrol. v.159, pp.839–852.CrossRefGoogle Scholar
  92. Vijaya Kumar, K., Laxman, M. B. and Nagaraju, K. (2018). Mantle source heterogeneity in continental mafic Large Igneous Provinces: insights from the Panjal, Rajmahal and Deccan basalts, India. In:S. Sensarma and B.C. Storey (Eds.), Large Igneous Provinces from Gondwana and Adjacent Regions, Geol. Soc. London, Spl. Publ., v.463, pp.87–116.Google Scholar
  93. Wadia, D.N. (1975) Geology of India. Tata McGraw-Hill, New Delhi, 508pp.Google Scholar
  94. Wang, C.Y. and Zhou, M.F. (2006) Genesis of the Permian Baimazhai magmatic Ni-Cu-(PGE) sulfide deposit, Yunnan, SW China. Mineral. Deposita, v.41, pp.771–783.CrossRefGoogle Scholar
  95. Wendlandt, R.F. (1982) Sulfide saturation of basalt and andesite melts at high pressures and temperatures. Amer. Mineral., v.67, pp.877–885.Google Scholar
  96. Wilson, A. and Chunnett, G. (2006) Trace element and platinum group element distributions and the genesis of the Merensky Reef, Western Bushveld Complex, South Africa. Jour. Petrol., v.47, pp.2369–2403.CrossRefGoogle Scholar
  97. Wooden, J.L., Czamanske, G.K., Fedorenko, V.A., Arndt, N.T., Chauvel, C., Bouse, R.M. and Siems, D.F. (1993) Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim. Cosmochim. Acta, v.57, pp.3677–3704.CrossRefGoogle Scholar
  98. Yuan, F., Zhou, T., Zhang, D., Jowitt, S.M., Keays, R.R., Liu, S. and Fan, Y. (2012) Siderophile and chalcophile metal variations in basalts: implications for the sulfide saturation history and Ni-Cu-PGE mineralization potential of the Tarim continental flood basalt province, Xinjiang Province, China. Ore Geol. Rev., v.45, pp.5–15.CrossRefGoogle Scholar
  99. Zhang, M., O’Reilly, S.Y., Wang, K.L., Hronsky, J. and Griffin, W.L. (2008) Flood basalts and metallogeny: the lithospheric mantle connection. Earth Sci. Rev., v.86, pp.145–174.CrossRefGoogle Scholar
  100. Zhang, Z., Mao, J., Chai, F., Yan, S., Chen, B. and Pirajno, F. (2009) Geochemistry of the Permian Kalatongke mafic intrusions, northern Xinjiang, northwest China: implications for the genesis of magmatic Ni-Cu sulfide deposits. Econ. Geol., v.104, pp.185–203.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2018

Authors and Affiliations

  1. 1.School of Earth SciencesSRTM UniversityNandedIndia

Personalised recommendations