Lower Palar River Sediments, Southern Peninsular, India: Geochemistry, Source-Area Weathering, Provenance and Tectonic Setting

  • M. R. ResmiEmail author
  • Hema Achyuthan


This present study describes the geochemistry of fluvial sediments of the Palar river (lower reaches), Southern Peninsular India, with an aim to evaluate their provenance, weathering and tectonic setting. The bulk sediment chemistry is influenced by grain size. The river sediments are enriched with SiO2 and depleted in Al2O3, K2O, CaO, Na2O, MgO, P2O5, MnO, Fe2O3 as compared with UCC values. Geochemical classification indicate that the sediments are mainly arkose, wacke and shale in composition. Discriminant diagrams together with immobile element ratio plots reveal that, the Palar river sediments are mostly derived from rocks formed in an active continental margin. Additionally, the rare earth element ratios as well as chondrite-normalized REE patterns with flat HREE, LREE enrichment, and negative Eu anomalies indicate felsic rock sources. The chemical indices of alteration suggest that Palar river sediments are chemically immature and have experienced low chemical weathering effects. This is further supported by the Th/U Rb/Sr ratio and A-CN-K ternary diagram, with most of the sample data points falling close to the plagioclase-smectite line. The bivariate plot of Th/Sc versus Zr/Sc suggest a moderate recycled origin of the sediments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, K.K., Singh, I.B., Sharma, M., Sharma, S. and Rajagopalan, G. (2002) Extensional Tectonic activity in the Craton ward parts (peripheral bulge) of the Ganga Plain Foreland Basin, India. Internat. Jour. Earth Sci., v.91(5), pp.897–905.CrossRefGoogle Scholar
  2. Ahmad, I. and Chandra, R. (2013) Geochemistry of loess-paleosol sediments of Kashmir Valley, India: Provenance and weathering. Jour. Asian Earth Sci., v.66, pp.73–89.CrossRefGoogle Scholar
  3. Amajor, L.C. (1987) Major and trace elements geochemistry of Albin and Touronian shales from the Southern Benue trough, Nigeria. Jour. African Earth Sci., v.6, pp.633–641.Google Scholar
  4. Babeesh, C., Achyuthan, H., Jaiswal, M.K. and Lone, A. (2017) Late Quaternary loess-like paleosols and pedocomplexes, geochemistry, provenance and source area weathering, Manasbal, Kashmir Valley, India. Geomorphology, v.284, pp.191–205.CrossRefGoogle Scholar
  5. Babeesh, C., Lone, A. and Achyuthan, H. (2017) Geochemistry of Manasbal Lake Sediments, Kashmir: Weathering, Provenance and Tectonic Setting. Jour. Geol. Soc. India, v.89, pp.563–572.CrossRefGoogle Scholar
  6. Bhatia, M.R. (1983) Plate tectonics and geochemical composition of sandstones. Jour. Geol., v.91, pp.611–627.CrossRefGoogle Scholar
  7. Bhatia, M.R. (1985) Rare-Earth Elements Geochemistry of Australian Paleozoic Graywackes and Mud Rocks: Provenance and tectonic control. Sediment. Geol., v.45, pp.97–113.CrossRefGoogle Scholar
  8. Bhatia, M.R. (1985) Composition and classification of Paleozoic flysch mudrocks of eastern Australia: Implications in provenance and tectonic setting interpretation. Sediment. Geol., v.41, pp.249–268.CrossRefGoogle Scholar
  9. Bhatia, M.R. and Taylor, S.R. (1981) Trace-element geochemistry and sedimentary provinces: a study from the Tasman Geosyncline, Australia. Chemical Geol., v.33, pp.115–125.CrossRefGoogle Scholar
  10. Bhatia, M.R. and Crook, K.A.W. (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol., v.92, pp.181–193.CrossRefGoogle Scholar
  11. Carver, R.E. (1971) Procedures in sedimentary petrology, John Wiley and sons. Inc. New York, p.653.Google Scholar
  12. Condie, K.C., Phillip, D.N.J. and Conway, C.M. (1992) Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from Tonto Basin Supergroup, central Arizona. Sediment. Geol., v.77, pp.51–76.CrossRefGoogle Scholar
  13. Cox, R. and Lowe, D. (1995) A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover. Jour. Sediment. Res., v.65, pp.1–12.Google Scholar
  14. Cox, R., Lower, D.R., Cullers, R.L. (1995) The influence of sediment recycling and basement composition on evolution of mud rock chemistry in the southwestern United States. Geochem. Cosmochim. Acta, v.59, pp.2919–2940.CrossRefGoogle Scholar
  15. Cullers, R.L. (1988) Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of Danburg granite, Georgia, U.S.A. Lithos, v.21, pp.301–314.CrossRefGoogle Scholar
  16. Cullers, R.L. (1994) The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian–Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim. Cosmochim. Acta, v.58, pp.4955–4972.CrossRefGoogle Scholar
  17. Cullers, R.L. (2000) The Geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, v.51, pp.181–203.CrossRefGoogle Scholar
  18. Cullers, R.L. and Graf, J. (1983) Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks, ore petrogenesis. In: Henderson, P. (Ed.), Rare-Earth Geochemistry Elsevier, Amsterdam, pp.275–312Google Scholar
  19. Cullers, R.L. and Podkovyrov, V.N. (2000) Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Res., v.104, pp.77–93.CrossRefGoogle Scholar
  20. Cullers, R.L., Basu, A. and Suttner, L.J. (1988) Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chemical Geol., v.70, pp.335–348.CrossRefGoogle Scholar
  21. Das, B.K. and Haake, B. (2003) Geochemistry of Rewalsar Lake sediments, Lesser Himalaya, India: implications for source-area weathering, provenance and tectonic setting. Geoscience Jour., v.7, pp.299–312.CrossRefGoogle Scholar
  22. Derry, L.A. and France-Lanord, C. (1996) Neogene Himalayan weathering history and river 87Sr/86Sr: impact on marine Sr record. Earth Planet. Sci. Lett., v.142, pp.59–74.CrossRefGoogle Scholar
  23. Drever, J.I. and Zobrist, J. (1992) Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps. Geochim. Cosmochim. Acta, v.56, pp.3209–3216.CrossRefGoogle Scholar
  24. Dupré, B., Dessert, C., Oliva, P., Goddéris, Y., Viers, J., François, L., Millot, R. and Gaillardet, J. (2003) Rivers, chemical weathering and Earth’s climate. Comptes Rendus Geosci., v.335, pp.1141–1160.CrossRefGoogle Scholar
  25. Edmond, J.M. (1992) 0 Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, v.258, pp.1594–1597.CrossRefGoogle Scholar
  26. Fedo, C.M., Eriksson, K.A. and Krogstad, E.J. (1996) Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source-area weathering. Geochim. Cosmochim. Acta, v.60, pp.1751–1763.CrossRefGoogle Scholar
  27. Fedo, C.M., Nesbitt, H.W. and Young, G.M. (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, v.23, pp.921–924.CrossRefGoogle Scholar
  28. Feng, R. and Kerrich, R. (1990) Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: Implications for provenance and tectonic setting. Geochim. Cosmochim. Acta, v.54, pp.1061–1081.CrossRefGoogle Scholar
  29. Galy, A. and France-Lanord, C. (2001) Higher erosion rates in the Himalaya: geochemical constraints on riverine fluxes. Geology, v.29, pp.23–26.CrossRefGoogle Scholar
  30. Garver, J.I. and Scott, T.J. (1995) Trace elements in shale as indicators of crustal provenance and terrain accretion in south Canadian Cordillera. Geol. Soc. Amer. Bull., v.107, pp.440–453.CrossRefGoogle Scholar
  31. Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L. (1984) The North American shale composite: Its compilation and major and trace element characteristics. Geochim. Cosmochim. Acta, v.48, pp.2469–2482.CrossRefGoogle Scholar
  32. Harnois, L. (1988) The CIW index: A new chemical index of weathering. Sediment. Geol., v.55, pp.319–322.CrossRefGoogle Scholar
  33. Hayashi, K.I., Fujisawa, H., Holland, H.D. and Ohmoto, H. (1997) Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta, v.61, pp. 4115–4137.CrossRefGoogle Scholar
  34. Herron, M.M. (1986) Geochemical classification of terrigeneous sands and shales from core or log data. Jour. Sediment. Petrol., v.58, pp.820–829.Google Scholar
  35. Hofer, G., Wagreich, M. and Neuhuber, S. (2013) Geochemistry of fine-grained sediments of the upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): Implications for paleoenvironmental and provenance studies. Geoscience Frontiers, v.4, pp.449–468.CrossRefGoogle Scholar
  36. Holail, H.M. and Moghazi, A.K.M. (1998) Provenance, tectonic setting and geochemistry of greywackes and siltstones of the Late Precambrian Hammamat Group, Egypt. Sediment. Geol., v.116, pp.227–250.CrossRefGoogle Scholar
  37. Rahman, M.J.J. and Suzuki, S. (2007) Geochemistry of sandstones from the Miocene Surma Group, Bengal Basin,Bangladesh: Implications for Provenance, tectonic setting and weathering. Geochemical Jour., v.41, pp.415–428.CrossRefGoogle Scholar
  38. Raith, M., Raase, P., Ackermand, D. and LAL, R.K. (1983) Metamorphic conditions in the charnockite–khondalite zone of south India: geothermobarometry on garnet–pyroxene–plagioclase rocks. In: Naqvi, S.M., and Rogers, J.J., (Eds.), Precambrian of South India. Mem. Geol. Soc. India, no.4, pp.438Google Scholar
  39. Mahjoor, A.S., Karimi, M. and Rastegarlari, A. (2009) Mineralogical and geochemical characteristics of clay deposits (Central Iran) and their applications. Jour. Appld. Sci., v.9, pp.601–614.CrossRefGoogle Scholar
  40. Maynard, J.B., Valloni, R. and Yu, H.S. (1982) Composition of modern deepsea sands from arc-related basins. Trench-Forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins. Legget, J.K., (Ed.), Geol. Soc. Amer. Spec. Paper, v.284, pp.21–40.Google Scholar
  41. McLennan, S.M. (1984) Petrological characteristics of Archean greywackes. Jour. Sediment. Petrol., v.54, pp.889–898.Google Scholar
  42. McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin, B.R., Mackay, G.A. (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. Mineral. Soc. Amer., v.21, pp.169–200.Google Scholar
  43. McLennan, S.M. (1993) Weathering and global denudation. Jour. Geol., v.101,pp.295–303.CrossRefGoogle Scholar
  44. McLennan, S.M. and Taylor, J.R. (1983) Continental freeboard, sedimentation rates and growth of continental crust. Nature, v.306, pp.169–172.CrossRefGoogle Scholar
  45. McLennan, S.M. and Taylor, J.R. (1991) Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. Jour. Geol., v.99, pp.1–21.CrossRefGoogle Scholar
  46. McLennan, S.M., Taylor, S.R. and Eriksson, K.A. (1983) Geochemistry of Archaean shales from Pilbara Supergroup, Western Australia. Geochim. Cosmochim. Acta, v.47, pp.1211–1222.CrossRefGoogle Scholar
  47. McLennan, S.M., Hemming, S., McDaniel, D.K. and Hanson, G.M. (1993) Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson, M.J., Basu, A. (Eds.), Processes Controlling the Composition of Clastic Sediments. Geol. Soc. Amer., Spec. Paper, v.284, pp.21–40.CrossRefGoogle Scholar
  48. Miall, A.D. (1978) Lithofacies types and vertical profile models in braided river deposits: a summary. In: Miall, A.D. (Ed.), Fluvial Sedimentology. Canadian Society of Petroleum Geologists Memoirs, v.5, pp. 597–604.Google Scholar
  49. Miall, A.D. (1996) The Geology of Fluvial Deposits. Sedimentary Unit, Basin Analysis, and Petroleum Geology, Springer-Verlag, Berlin, pp.582.Google Scholar
  50. Moosavirad, S.M., Janardhana, M.R., Sethumadhav, M.S., Moghadam, M.R. and Shankara, M. (2010) Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, source weathering and tectonic setting. Chemie der Erde-Geochemistry, v.71, pp.279–288.CrossRefGoogle Scholar
  51. Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, v.199, pp.715–717.CrossRefGoogle Scholar
  52. Nesbitt, H.W. and Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, v.48, pp.1523–1534.CrossRefGoogle Scholar
  53. Nesbitt, H.W. and Young, G.M. (1989) Formation and diagenesis of weathering profiles. Jour. Geol., v.97, pp.129–147.CrossRefGoogle Scholar
  54. Nesbitt, H.W. and Young, G.M. (1996) Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sediment., v.43, pp.341–358.CrossRefGoogle Scholar
  55. Resmi, M.R., Achyuthan, H. and Jaiswal, M.K. (2016) Middle to late Holocene paleochannels and migration of the Palar River, Tamil Nadu: Implications of neotectonic activity. Quaternary Internat., DOI: 10.1016/j.quaint.2016.05.002Google Scholar
  56. Roser, B.P. and Korsch, R.J. (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Jour. Geol., v.94, pp.635–650.CrossRefGoogle Scholar
  57. Roser, B.P. and Korsch, R.J. (1988) Provenance signatures of sandstonemudstone suites determined using discriminant function analysis of majorelement data. Chemical Geol., v.67, pp.119–139.CrossRefGoogle Scholar
  58. Sarin, M.M., Krishnaswami, S., Dilli, K., Somayajulu, B.L.K. and Moore, W.S. (1989) Major ion chemistry of the Ganga–Brahmaputra river system: weathering processes and fluxes to theBay of Bengal. Geochim. Cosmochim. Acta, v.58, pp.4809–4814.Google Scholar
  59. Sharma, A. and Rajamani, V. (2000) Weathering of gneissic rocks in the upper reaches of the Cauvery River, south India: implications to neotectonic of the region. Chemical Geol., v.166, pp.203–223.CrossRefGoogle Scholar
  60. Shepard, F. (1954) Nomenclature based on sand-silt-clay ratios. Jour. Sediment. Petrol., v.24, pp.151–158.Google Scholar
  61. Singh, I. B., Rajagopalan, G., Agarwal, K. K., Srivastava, P. Sharma, M. and Sharma, S. (1997). Evidence of Middle to Late Holocene Neotectonic Activity in Ganga Plain. Curr. Sci., v.12, pp.1114–1117.Google Scholar
  62. Singh, M., Sharma, M. and Tobschall, H.J. (2005) Weathering of the Ganga alluvial plain,northern India: implications from fluvial geochemistry of the Gomati River. Appld. Geochem., v.20, pp.1–21.CrossRefGoogle Scholar
  63. Singh, P. (2009) Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes. Chemical Geol., v.266, pp.251–264.CrossRefGoogle Scholar
  64. Singh, P. (2010) Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India. Chemical Geol., v.269, pp.220–236.CrossRefGoogle Scholar
  65. Singh, P. and Rajamani, V. (2001) Geochemistry of the floodplain sediments of the Kaveri River, southern India. Jour. Sediment. Res., v.71(1), pp.50–60.CrossRefGoogle Scholar
  66. Singh, P. and Rajamani, V. (2001) REE geochemistry of recent clastic sediments from the Kaveri floodplains, Southern India: implication to source area weathering and sedimentary processes. Geochim. Cosmochim. Acta, v.65, pp.3093–3108.CrossRefGoogle Scholar
  67. Sprangers, J.T.C.M. and Balasubramaniam, K. (1978) A phytosocoilogical analysis of the tropical dry semi-evergreen forest of Marakkanam, South-Eastern India. Tropical Ecology, v.19(1), pp.70–92.Google Scholar
  68. Subrahmanya, K.R. (1996) Active intraplate deformation in south India. Tectonophysics, v.262, pp.231–241.CrossRefGoogle Scholar
  69. Sun, Q. Wang, S. Zhou. (2010) Sediment geochemistry of Lake Daihai, northcentral China: implications for catchment weathering and climate change during the Holocene. Jour. Paleolimnol., v.43, pp.75–87.CrossRefGoogle Scholar
  70. Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its composition and Evolution. Blackwell, Oxford, 312p.Google Scholar
  71. Tripathi, J.K. and Rajamani, V. (2003) Geochemistry of Delhi quartzites: implications for the provenance and source area weathering. Jour. Geol. Soc. India, v.62, pp.215–226.Google Scholar
  72. Wronkiewicz, D.J. and Condie K.C. (1987) Geochemistry of Archean Shales from the Witwatersrand super group, South Africa: source area weathering and provenance. Geochim. Cosmochim. Acta, v.51, pp.2401–2416.CrossRefGoogle Scholar
  73. Wronkiewicz, D.J. and Condie K.C. (1989) Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0 Ga old continental craton. Geochim. Cosmochim. Acta, v.53, pp.1537–1549.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2018

Authors and Affiliations

  1. 1.Department of GeologyAnna UniversityChennaiIndia

Personalised recommendations