Advertisement

Petrographic and Geochemical Study of Gurha Lignites, Bikaner Basin, Rajasthan, India: Implications for Thermal Maturity, Hydrocarbon Generation Potential and Paleodepositional Environment

  • Alok K. Singh
  • Alok Kumar
Article

Abstract

In the present study an attempt has been made to characterize the Gurha lignites employing petrographic and geochemical techniques on a large number of lignite samples. The data generated has been discussed to understand the hydrocarbon generation potential as well as the evolution of the paleomires of these lignites. The present investigation indicates that these lignites are mainly dominated by the huminite followed by inertinite and liptinites occurs in meager concentration. The huminite reflectance values rank the Gurha lignite as a low-rank B lignite.

Petrographic result indicates these lignites are thermally immature in nature and comprised of Type-III kerogen and may generate only gas on maturation which is further supported by the rock-eval pyrolysis. The plots of rock eval data also indicates the same. The GI and TPI as well as GWI and VI values and the petrography-based facies critical models indicate that these lignites originated mostly under wet forest swamp condition. The microscopic constituents have also shown that these lignites are from herbaceous plants in wet forest swamp environment and ombrotrophic hydrological condition. The presences of framboidal pyrite in the study area infer the marine influence which also supported by the presence of high sulphur content.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASTM D3176 (1989) Standard Practice for Ultimate Analysis of Coal and Coke, Annual Book of ASTM Standards. v. 05.05.Google Scholar
  2. ASTM D5373 (1993) Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal, pp.1–11.Google Scholar
  3. ASTM D5373-04 (2004) Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal and coke. In: Annual Book of ASTM Standards, Part 26. Gaseous Fuels: Coal and Coke ASTM, Philadelphia, PA, pp. 504–507.Google Scholar
  4. ASTM-D5373-08 (2008) Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal.Google Scholar
  5. ASTM D5373-15 (2013) Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. ASTM International, West Conshohocken, PA.Google Scholar
  6. Alaug, A.S. (2011) Source rocks evaluation, hydrocarbon generation and palynofacies study of Late Cretaceous succession at 16/G-1 offshore well in Qamar Basin, eastern Yemen. Arab. Jour. Geosci., v.4, pp.551–566.CrossRefGoogle Scholar
  7. Bhattacharya, S. and Dutta, S. (2015) Neoproterozoic-Early Cambrian biota and ancient niche: A synthesisfrom molecular markers and palynomorphs from Bikaner-NagaurBasin, western India. Precambrian Res., v.266, pp.361–374.CrossRefGoogle Scholar
  8. Bechtel, A., Sachsenhofer, R.F., Markic, M., Gratzer, R., Lücke, A. and Püttmann, W. (2003) Paleoenvironmental implications from biomarker and stable isotope investigations on the Pliocene Velenje lignite seam (Slovenia). Org. Geochem., v.34, pp.1277–1298.CrossRefGoogle Scholar
  9. Bechtel, A., Karayiðit, A.I., Sachsenhofer, R.F., Inaner, H., Christanis, K. and Gratzer, R. (2014) Spatial and temporal variability in vegetation and coal facies as reflected by organic petrological and geochemical data in the Middle Miocene Çayirhan coal field (Turkey). Internat. Jour. Coal Geol., v.134–135, pp.46–60.CrossRefGoogle Scholar
  10. Bhandari, A. (1999) Phanerozoic stratigraphy of western Rajasthan India: a review. In: P. Kataria (Ed.), Geology of Rajasthan: Status and Perspective. MLS University, Udaipur, pp.126–174.Google Scholar
  11. BIS, (2003) Methods of test for coal and coke (2nd revision of IS: 1350). Part I, Proximate analysis. Bureau of Indian Standard, pp.1–29.Google Scholar
  12. Bordenave, M.L., Espitalié, J., Leplat, P., Oudin, J.L.and Vandenbroucke, M. (1993) Screening techniques for source rock evaluation. In: M.L. Bordenave, (Ed.), Applied Petroleum Geochemistry. Editions Technip, Paris, pp.217–278.Google Scholar
  13. Bustin, R.M. and Lowe, L.E. (1987) Sulphur, low temperature ash and minor elements in humid–temperate peat of the Fraser River Delta, British Columbia. Jour. Geol. Soc. London, v.144, pp.435–450.CrossRefGoogle Scholar
  14. Calder, J.H., Gibling, M.R. and Mukhopadhyay, P.K. (1991) Peat formation in a Westphalian B piedmont setting, Cumberland basin, Nova Scotia: implications for the maceralbased interpretation of rheotrophic and raised paleomires. Bull. Soc. Géol. France, v.162(2), pp.283–298.Google Scholar
  15. Casagrande, D.J. (1987) Sulphur in peat and coal. Geol. Soc. London, Spec. Publ., v.32, pp.87–105.CrossRefGoogle Scholar
  16. Diessel, C.F.K. (1986) On the correlation between coal facies and depositional environments. 20th Newcastle Symposium on “Advances in the Study of the Sydney Basin”: Publ., 246, Proc., 1986. Department of Geology, University of Newcastle, Australia, pp.19–22.Google Scholar
  17. Diessel, C.F.K. (1992) Coal-bearing Depositional Systems. Springer-Verlag, New York, Berlin, pp.721.CrossRefGoogle Scholar
  18. Erik, N.Y. (2011) Hydrocarbon generation potential and MioceneePliocene paleoenvironments of the Kangal Basin (Central Anatolia, Turkey). Jour. Asian Earth Sci., v.42, pp.1146–1162.CrossRefGoogle Scholar
  19. Flores, D. (2002) Organic facies and depositional palaeoenvironment of lignites from Rio Maior Basin (Portugal). Inter. Jour. Coal Geol., v.48, pp.181–195.CrossRefGoogle Scholar
  20. Hackley, P.C., Warwick, P.D. and Breland Jr., F.C. (2007) Organic petrology and coalbed gas content, Wilcox Group (PaleoceneeEocene), northern Louisiana. Internat. Jour. Coal Geol., v.71, pp.54–71.CrossRefGoogle Scholar
  21. Hakimi, M.H., Abdullah W.H., Sia, S. and Makeen, Y.M. (2013) Organic geochemical and petrographic characteristics of Tertiary coals in the northwest Sarawak, Malaysia: Implications for palaeoenvironmental conditions and hydrocarbon generation potential Mar. Pet. Geol., v.48, pp.31–46.CrossRefGoogle Scholar
  22. Hower, J.C., O’Keefe, J.M.K., Volk, T.J. and Watt, M.A. (2010) Funginite eresinite associations in coal. Internat. Jour. Coal Geol., v.83, pp.64–72.CrossRefGoogle Scholar
  23. Hower, J.C., O’Keefe, J.M.K., Eble, C.F., Raymond, A., Valentim, B., Volk, T.J., Richardson, A.R., Satterwhite, A.B., Hatch, R.S., Stucker, J.D. and Watt, M.A. (2011) Notes on the origin of inertinite macerals in coal: evidence for fungal and arthropod transformations of degraded macerals. Internat. Jour. Coal Geol., v.86, pp.231–240.CrossRefGoogle Scholar
  24. Hunt, J.M. (1996) Petroleum Geochemistry and Geology, second ed. W.H. Freeman, San Francisco.Google Scholar
  25. ICCP (1971) International Handbook of Coal Petrography, 2nd ed. Centre National de la Recherche Scientifique, Paris (1st suppl.).Google Scholar
  26. ICCP (1993) International Handbook of Coal Petrography. 3rd suppl to the 2nd edn. Centre National de la Recherche Scientifique, Paris.Google Scholar
  27. ICCP (1998) The new vitrinite classification (International Committee for Coal and Organic Petrology, System 1994). Fuel, v.77, pp.349–358.Google Scholar
  28. ICCP (2001) The new inertinite classification (International Committee for Coal and Organic Petrology, System 1994). Fuel, v.80, pp.459–471.Google Scholar
  29. ICCP (2005) Classification of huminite (International Committee for Coal and Organic Petrology, System 1994). Inter. Jour. Coal Geol., v.62, pp.85–106.Google Scholar
  30. ICCP (2017) Classification of liptinite (International Committee for Coal and Organic Petrology, System 1994). Inter. Jour. Coal Geol., v.169, pp.40–61.Google Scholar
  31. ISO 11760 (2005) Classification of coals. International Standard,pp. 1–9Google Scholar
  32. Jasper, K., Hartkopf-Fröder, C., Flajs, G. and Littke, R. (2010) Evolution of Pennsylvanian (Late Carboniferous) peat swamps of the Ruhr Basin, Germany: comparison of palynological, coal petrographical and organic geochemical data. IInternat. Jour. Coal Geol., v.83, pp.346–365.CrossRefGoogle Scholar
  33. Kalkreuth, W., Kotis, T., Papanicolaou, C. and Kokkinakis, P. (1991) The geology and coal petrology of a Miocene lignite profile at Meliadi Mine Katerini,Greece. Internat. Jour. Coal Geol., v.17, pp.51–67.CrossRefGoogle Scholar
  34. Koukouzas, N., Kalaitzidis, S.P. and Ward, C.R. (2010) Organic petrographical, mineralogical and geochemical features of the Achlada and Mavropigi lignite deposits, NW Macedonia, Greece. Inter. Jour. Coal Geol., v.83, pp.387–395.CrossRefGoogle Scholar
  35. Kumar, M., Spicer, R.A., Spicer, T.E.V., Shukla, A., Mehrotra, R.C. and Monga, P. (2016) Palynostratigraphy and palynofacies of the early Eocene Gurha lignite mine, Rajasthan, India. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.461, pp.98–108.CrossRefGoogle Scholar
  36. Kumar, K., Rana, R.S. and Paliwal, B.S. (2005) Osteoglossid and Lepisosteid fish remains from the Paleocene Palana Formation, Rajasthan, India. Palaeontology, v.48, pp.1187–1209.CrossRefGoogle Scholar
  37. Mukhopadhyay, P.K., Wade, J.A. and Kruge, M.A. (1995) Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil–source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada. Org. Geochem., v.22, pp.85–104.CrossRefGoogle Scholar
  38. Mukhopadhyay, P.K., Wade, J.A. and Kruge, M.A. (1995) Organic facies and maturation of Cretaceous/Jurassic rocks and possible oil–source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada. Org. Geochem., v.22, pp.85–104.CrossRefGoogle Scholar
  39. Mitrovic, D., Ðokovic, N., •ivotic, D., Bechtel, A., Šajnovic, A. and Stojanovic, K. (2016) Petrographical and organic geochemical study of the Kovin lignite deposit, Serbia. Inter. Jour. Coal Geol., v.168, pp.80–107CrossRefGoogle Scholar
  40. O’Keefe, J.M.K. and Hower, J.C. (2011) Revisiting Coos Bay, Oregon: a reexamination of funginiteehuminite relationships in Eocene subbituminous coals. Internat. Jour. Coal Geol., v.85, pp.34–42.CrossRefGoogle Scholar
  41. Perry, G.J., Allardice, D.J. and Kiss, L.T. (1982) Variation in Victorian brown coal characteristics and hydrogenation potential. Fuel, v.61, pp.1058–1064.CrossRefGoogle Scholar
  42. Petersen, H.I. and Ratanasthien, B. (2011) Coal facies in a Cenozoic paralic lignite bed, Krabi Basin, southern Thailand: changing peat-forming conditions related to relative sea-level controlled watertable variations. Inter. Jour. Coal Geol., v.87, pp.2–12.CrossRefGoogle Scholar
  43. Petersen, H.I., Lindström, S., Nytoft, H.P. and Rosenberg, P. (2009) Composition, peatforming vegetation and kerogen paraffinicity of Cenozoic coals: relationship to variations in the petroleum generation potential (Hydrogen Index). Inter. Jour. Coal Geol., v.78, pp.119–134.CrossRefGoogle Scholar
  44. Peters, K.E. and Cassa, M.R. (1994) Applied source rock geochemistry. In: Magoon, L.B., Dow, W.G. (Eds.), The Petroleum System d From Source to Trap, AAPG, Mem., v.60, pp.93–120.Google Scholar
  45. Peters, K.E. (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull. v.70(3), pp.318–329.Google Scholar
  46. Prasad, B., Asher, R. and Borgohai, B. (2010) Late Neoproterozoic (Ediacaran)-Early Paleo-zoic (Cambrian) acritarchs from the Marwar Supergroup, Bikaner-Nagaur Basin, Rajasthan. Jour. Geol. Soc. India, v.75, pp.415–431.CrossRefGoogle Scholar
  47. Raju, S.V. and Mathur, N. (2013) Rajasthan lignite as a source of unconventional oil. Curr. Sci., v.104(6), pp.752–757.Google Scholar
  48. Redlich, P., Jackson, W.R. and Larkins, F.P. (1985) Hydrogenation of brown coal 9.Physical characterisatlon and liquefaction potential of Australian coals. Fuel, v.64, pp.1383–1390.CrossRefGoogle Scholar
  49. Ruau, O., Pradier, B., Landais, P. and Gardette, J.L. (1997) Influence of the conditions of deposition on the chemistry and the reflectance variations of the Brent coals. Org. Geochem., v.25, pp.325–339.CrossRefGoogle Scholar
  50. Shivanna, M. and Singh, H. (2016) Depositional environment and hydrocarbon potential of marginal marine sediments of Eocene from western India: A palynofacies perspective. Mar. Pet. Geol., v.73, pp.311–321.CrossRefGoogle Scholar
  51. Shukla, A., Mehrotra, R.C., Spicer, R.A., Spicer, T.E.V. and Kumar M. (2014) Cool equatorial terrestrial temperatures and the South Asianmonsoon in the Early Eocene: Evidence from the Gurha Mine, Rajasthan, India. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.412, pp.187–198.CrossRefGoogle Scholar
  52. Sia, G.S. and Abdullah, W.H. (2012) Geochemical and petrographical characteristics of low-rank Balingian coal from Sarawak, Malaysia: its implications on depositional conditions and thermal maturity. Inter. Jour. Coal Geol., v.96-97, pp.22–38.CrossRefGoogle Scholar
  53. Siavalas, G., Linou, M., Chatziapostolou, A., Kalaitzidis, S., Papaefthymiou, H. and Christanis, K. (2009) Palaeoenvironment of Seam I in the Marathousa Lignite Mine, Megalopolis Basin (Southern Greece). Inter. Jour. Coal Geol.,. v.78, pp.233–248.CrossRefGoogle Scholar
  54. Singh, P.K., Rajak, P. K., Singh, M.P., Naik, A. S., Singh, V. K., Raju, S.V. and Ojha, S. (2015) Environmental Geochemistry of Selected Elements in Lignite from Barsingsar and Gurha Mines of Rajasthan, Western India. Jour. Geol. Soc. India, v.86, pp.23–32.CrossRefGoogle Scholar
  55. Stock, A.T., Littke, R., Lücke, A., Zieger, L. and Thielemann, T. (2016) Miocene depositional environment and climate in western Europe: The lignite deposits of the Lower Rhine Basin, Germany. Internat. Jour. Coal Geol., v.157, pp.2–18.CrossRefGoogle Scholar
  56. Tissot, B. P., and D. H. Welte. (1984) Petroleum formation and occurrence, second ed.,Springer, Berlin, pp. 699CrossRefGoogle Scholar
  57. Tissot, B.P., Pelet, R. and Ungerer, P. (1987) Thermal history of sedimentary basins, maturations indices, and kinetics of oil and gas generation. AAPG Bull., v.71(12), pp.1445–1466.Google Scholar
  58. Ward, C.R. (2002) Analysis and significance of mineral matter in coal seams. Internat. Jour. Coal Geol., v.50, pp.135–68.CrossRefGoogle Scholar
  59. Zheng, G., Duan, Y., Takano, B., Luo, B., Cheng, K. and Zhang, Y. (2003) Pyrolysis studies on the conversion of vitrinite reflectance and the primary productivity of various non-marine source rocks in China. Jour. Asian Earth Sci., v.22, pp.353–361.CrossRefGoogle Scholar
  60. Zivotic, D., Stojanovic, K., Grzetic, I., Jovancicevic, B., Cvetkovic, O., Sajnovic, A., Simic, V., Stojakovic, R. and Scheeder, G. (2013) Petrological and geochemical composition of lignite from the D field, Kolubara basin (Serbia). Inter. Jour. Coal Geol., v.111, pp.5–22.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2018

Authors and Affiliations

  1. 1.Petroleum Engineering and Geological Sciences DivisionRajiv Gandhi Institute of Petroleum TechnologyJais, AmethiIndia

Personalised recommendations