Skip to main content
Log in

Morphometric Parameters and Neotectonics of Kalyani River Basin, Ganga Plain: A Remote Sensing and GIS Approach

  • Published:
Journal of the Geological Society of India

Abstract

The drainage basin of the Kalyani river, a tributary of Gomati river has been mapped and delineated using Survey of India toposheets (1:50,000 scale) and remote sensing satellite data. The digitization, slope map preparation and statistical calculations have been carried out with the help of geographical information system (Arc GIS 10). Kalyani a fifth order river exhibits meandering behavior having 2.45 sinuosity index (SI). The Kalyani river basin has about 1235 km2area with NW-SE sloping trend. The total number of first, second, third, and fourth order streams are 373, 71, 12 and 2 respectively, showing dominance of first order streams in the basin. The mean bifurcation ratio (Rb) of the entire basin is 4.8, which indicates that the drainage is not much influenced by geological structures and exhibits dendritic drainage pattern. Relief ratio (Rr) indicates low to medium surface run-off, and low stream power for erosion. The analysis of river bank height ‘r’ (escarpment) and longitudinal profile of the river closely reveals neotectonic activity at some locations in the basin. To prepare a comprehensive watershed development and management plan, it is important to understand the topography and drainage characteristics of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angilliri, Y.E. (2008) Morphometric analysis of Colanguil river basin and flash flood hazard, San Jaun, Argentina. Environ. Geol., v.55(1), pp.107–111.

    Article  Google Scholar 

  • Awasthi, A. and Singh, D.S. (2011). Shallow Subsurface Facies of the Chhoti Gand ak River Basin, India. In: Singh, D.S. and Chhabra, N.L. (Eds.), Geological Processes and Climate Change, Macmillan Publishers India Ltd., pp. 223–234.

  • Brookfield, M.E. (1998) The evolution of great river system of southern Asia during the Cenozoic India-Asia collision: rivers draining southwards. Geomorphology, v.22, pp.285–312.

    Article  Google Scholar 

  • Bull, W.B. and Knuepfer, P.L.K. (1987) Adjustments by the Charwell River, New Zealand, to uplift and climatic changes. Geomorphology, v.1, pp.15–32.

    Article  Google Scholar 

  • Burnett, A.W. and Schumm, S.A. (1983) Alluvial river response to neotectonic deformation in Louisiana and Mississippi valley. Science, v.222, pp.49–50.

    Article  Google Scholar 

  • Chow Ven T (1964) Hand book of Applied Hydrology. McGraw Hill Inc, New York.

    Google Scholar 

  • Dewey, J.F. and Bird, J.M. (1970) Mountain belts and new global tectonics, Jour. Geophys. Res., v.40, pp.695–707.

    Google Scholar 

  • Dickinson, W.R. (1974) Plate tectonics and sedimentation, p. 127. In: Dickinson W.R. (Ed.) Tectonic and sedimentation. SEPM Spec. Publ., no.22, Tulsa, Okla.

    Book  Google Scholar 

  • Dornkamp, J.C. and King, C.A.M. (1971) Numerical analyses in geomorphology: an introduction. St Martins, New York, pp.372.

    Google Scholar 

  • Eze, E.B. and Efiong, J. (2010) Morphometric Parameters of the Calabar River Basin: Implication for Hydrologic Processes. Jour. Geogr. Geol., v.2(1), pp.18–26.

    Google Scholar 

  • Garde, R.J. (2006) River Morphology. New Age International (P) Ltd. Publ., pp.11–31.

    Google Scholar 

  • Hack, J.T. (1973) Stream-profile analysis and stream–gradient index. USGS Jour. Res., v.1, pp.421–429.

    Google Scholar 

  • Hadely, R.F. and Schumm, S.A. (1961) Sediment sources and drainage basin characteristics in upper Cheyenne River basin. USGS Water-supply paper, v.1531-B, pp.137–196.

    Google Scholar 

  • Holbrook, J. and Schumm, S.A. (1999) Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epiorogenic deformation in modern and ancient settings. Tectonophysics, v.305, pp.287–306.

    Article  Google Scholar 

  • Horton, R.E. (1932) Drainage basin characteristics. Trans. Amer. Geophys. Union, v.13, pp.350–361.

    Article  Google Scholar 

  • Horton, R.E. (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Amer., v.56, pp.275–370.

    Article  Google Scholar 

  • Javed, A., Khand auy, Y. and Rizwan A. (2009) Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and GIS technique, Jour. Indian Soc. Remote Sensing, v.37, no.2, pp.261–271.

    Article  Google Scholar 

  • Javed, A., Khand ay, Y. and Rais, S. (2011) Watershed prioritization using morphometric and land cover parameter, A Remote sensing and GIS based appproach. Jour. Geol. Soc. India, v.78, pp.63–75.

    Article  Google Scholar 

  • Kale, V.S. and Gupta, A. (2001) Introduction to geomorphology. New Delhi: Academic (India) Publishers (Chapter 3).

    Google Scholar 

  • Khanday, Y. and Javed, A. (2016) Prioritization of sub-watersheds for conservation measure in a semi-arid watershed using remote sensing and GIS, Journal of Geological Society of India, v.88, pp.185–196.

    Article  Google Scholar 

  • Khanday, Y. and Javed, A. (2017) Hydrological investigation in the semi and makhawan watershed using morphometry, Applied Water Science, published online 2.

    Google Scholar 

  • Kumar, D. (2015) Geomorphology of Ghaghara-Ganga interfluve between Faizabad and Kanpur region.Ph. D. Thesis, Geology Department, Lucknow University, Lucknow, India, 144p.

    Google Scholar 

  • Kumar, D., Singh D.S. and Mishra, M. (2015) Implication of Drainage Basin Parameters of Kukrail Nala, Ganga Plain, using Remote Sensing and GIS techniques, Internat. Jour. Appld. Remote Sensing and GIS, v.2(2), pp.1–9.

    Google Scholar 

  • Kumar, S., Singh, I.B., Singh, M. and Singh, D.S. (1995) Depositional pattern in upland surfaces of central Gangetic Plain near Lucknow, Jour. Geol. Soc. India, v.46(5). pp.545–555.

    Google Scholar 

  • Langbein, W.B. (1947) Topographic characteristic of Drainage Basin.USGS Water-Supply Paper 986 (C) pp.157–159.

    Google Scholar 

  • Marple, R.T. and Talwani, P. (1993) Evidence of possible tectonic upwarping along the South Carolina coastal plain from an examination of river morphology and elevation data. Geology, v.21(7), pp.651–654.

    Article  Google Scholar 

  • Merritts, D.J., Vincent, K.R. and Whol, E.E. (1994). Long river profiles, tectonism, and eustacy: A guide to interpreting fluvial terraces. Jour. Geophys. Res., v.99, pp.14031–14050.

    Article  Google Scholar 

  • Mesa, L.M. (2006) Morphometric analysis of a subtropical Andean basin (Tucumam,Argentina). Environ. Geol., v.50(8), pp.1235–1242.

    Article  Google Scholar 

  • Miller, V.C. (1953) A quantitative geomorphic study of drainage basin characteristic in the clinch, Mountain area, Verdinia and Tennesser, Project NR 389-042,Tech. Rept.3 Columbia University, Department of Geology, ONR, Geography Branch, New York.

    Google Scholar 

  • Mishra, M., Mathur, A and Singh, D.S. (2015) Distribution of Barren Salt-Affected Land in Gomati River Basin, Indo-Gangetic Plain, India, using Remote Sensing and GIS Techniques. Internat. Jour. Appld. Remote Sensing and GIS, v.2(1), pp.34–39.

    Google Scholar 

  • Mohindra, R. and Parkash, B. (1994). Geomorphology and neotectonic activity of the Gand akmegafanand adjoining areas, middle Gangetic Plains. Jour. Geol. Soc. India, v.43, pp.149–157.

    Google Scholar 

  • Ouchi, S. (1983) Response of Alluvial Rivers to Slow Active Tectonic Movement. Ph.D. Dissertation, Colorado State University, Fort Collins, CO, 205p.

    Google Scholar 

  • Ouchi, S. (1985) Response of alluvial rivers to slow active tectonic movement. Geol. Soc. Amer. Bull., v.96, pp.504–515.

    Article  Google Scholar 

  • Pakhmode, V., Kulkarni, H. and Deolankar, S.B. (2003) Hydrologicaldrainage analysis in watershed programme planning: a case from the Deccan Basalt India. Hydrogeol. Jour., v.11, pp.595–604.

    Article  Google Scholar 

  • Perucca, L.P. and Angilieri Y.E. (2010) Morphometric characterization of delMolle Basin applied to the evolution of flash floods hazards, Iglesia Department, San Jaun, Argentina. QuarternaryInternat.,v.233(1), pp.81–86.

    Article  Google Scholar 

  • Radonae, M., Radonae, N. And Dumitriu, D. (2003) Geomorphological evolution of longitudinal profiles in Carpathians. Geomorphology, v.50, pp.293–306.

    Article  Google Scholar 

  • Rai, P.K. Mishra, V.N. and Kshitij, M. (2017) A study of morphometric evaluation of the Son basin, India using geospatial approach, Remote Sensing Applications: Society and Environment, v.7, pp.9–20.

    Article  Google Scholar 

  • Rana, N. and Singh, D.S. (2018). The Yamuna River: Longest Tributary of Ganga. In: Dhruv Shen Singh (Eds.), The Indian River: Scientific and socio economic Aspects, Springer Hydrogeology, pp. 123–133.

    Google Scholar 

  • Reddy, G.P.O., Maji, A.K. and Gajbhiye, K.S. (2004) Drainage morphometry and its influence on land form characteristics in a basaltic terrain, Central India–a remote sensing and GIS approach. Internat. Jour. Appld. Earth Obser. Geoinform., v.6, pp.1–16.

    Article  Google Scholar 

  • Schumm, S.A. (1956) The evolution of drainage systems and slopes in bad land s at Perth Amboy, New Jersey. Geol. Soc. Amer. Bull., v.67, pp.597–646.

    Article  Google Scholar 

  • Schumm, S.A. (1963) Sinuosity of alluvial rivers on the Great Plains. Geol.Soc. Amer. Bull., v.74, pp.1089–1100.

    Article  Google Scholar 

  • Schumm, S.A. (1986) Alluvial river response to active tectonics, in Active Tectonics Studies in Geophysics. National Academic Press, Washington D.C., pp.80–94.

    Google Scholar 

  • Schumm, S.A. (1993) River response to base level changes: Implications for sequence stratigraphy. Jour. Geol., v.101, pp.279–294.

    Article  Google Scholar 

  • Seeber, L. and Gornitz, V. (1983) River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics, v.92, pp.335–367.

    Article  Google Scholar 

  • Shankar, M.N.R. and Mohan, G. (2006) Assessment of the groundwater potential and quality in Bhatsa and Kalu river basins of Thane district, western Deccan Volcanic Province of India. Environ. Geol., v.49(7), pp.990–998.

    Article  Google Scholar 

  • Singh, D.S. and Singh, I.B. (2005) Facies architecture of the Gand akMegafan, Ganga Plain, India. Spec. Publ. Palaeont. Soc. India, v.2, pp.125–140.

    Google Scholar 

  • Singh, D.S. (2007) Flood mitigation in the Ganga Plain. In: N. Rai and A.K. Singh (Ed.), Disaster Management in India, New Royal Book Company, pp.167–179.

    Google Scholar 

  • Singh D.S., Awasthi, A. and Bhardwaj, V. (2009) Control of Tectonics and Climate on ChhotiGand ak River Basin, East Ganga Plain, India. Himalyan Geology, v.30(2), pp.147–154.

    Google Scholar 

  • Singh, D. S., Awasthi, A. and Nishat, R. (2010) Impact of Climate Change on the Rivers of Ganga Plain. Inter. Jour. Rur. Devel. Manag. Studies, v.4 (1), pp.1–8.

    Google Scholar 

  • Singh, D.S. and Awasthi, A. (2011a) Natural hazards in the Ghaghara River area, Ganga, Plain, India, Natural Hazards, v.57, pp.213–225.

    Article  Google Scholar 

  • Singh, D.S. and Awasthi, A. (2011b) Implication of Drainage Basin Parameters of ChhotiGand ak River, Ganga Plain, India. Jour. Geol. Soc. India, v.78, pp.370–378.

    Article  Google Scholar 

  • Singh, D.S., Kumar, S., Kumar, D., Nishat, Awasthi, A. and Bhardwaj, V. (2013) Sedimentology and channel pattern of the Chhoti Gand ak River, Ganga Plain, India. Gondwana Geol.Mag., v.28(2), pp.171–180.

    Google Scholar 

  • Singh, D.S., Prajapati, S.K., Singh, P., Singh, K. and Kumar, D. (2015) Climatically induced levee break and flood risk management of the Gorakhpur region, Rapti River Basin, Ganga Plain, India. Jour. Geol. Soc. India, v.85, pp.79–86.

    Article  Google Scholar 

  • Singh, D.S. (2018) Concept of Rivers: An Introduction for Scientific and Socioeconomic Aspects. In: Dhruv Shen Singh (Eds.), The Indian River: Scientific and socio economic Aspects, Springer Hydrogeology, pp.1–23.

    Google Scholar 

  • Singh, I.B. and Rastogi, S.P. (1973) Tectonic framework of Gangetic alluvium with special reference to Ganga River in Uttar Pradesh. Curr. Sci., v.42, pp.305–307.

    Google Scholar 

  • Singh, I.B. (1996) Geological evolution of Ganga Plain–an overview. Jour. Palaeont. Soc. India, v.41, pp.99–137.

    Google Scholar 

  • Singh, I.B., Srivastava, P., Sharma, S., Sharma, M., Singh, D.S., Rajagopalan, G. and Shukla, U.K. (1999). Upland Interfluve Deposition: Alternative Model to Muddy Over bank Deposits. Facies, v.40, pp.197–210.

    Article  Google Scholar 

  • Smith, K.G. (1950) Stand ards for grading texture of erosional topography. Amer. Jour Sci., v.248, pp.655–688.

    Article  Google Scholar 

  • Snow, R.S. and Singerland, R.L. (1990) Mathematical modelling of graded river profiles. Jour. Geol., v.95, pp.15–33.

    Article  Google Scholar 

  • Sreedevi, P.D., Subrahmanyam, K, and Shakeel, A. (2005) The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environ. Geol., v.47(3), pp.412–420.

    Article  Google Scholar 

  • Strahler, A.N. (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Amer. Bull., v.63, pp.1117–1142.

    Article  Google Scholar 

  • Strahler, A.N. (1957) Quantitative analysis of watershed geomorphology. Trans. Amer. Geophys. Union, v.38, pp.913–920.

    Article  Google Scholar 

  • Strahler, A.N. (1964) Quantitative geomorphology of drainage basin and channel networks.In: V.T. Chow (Eds.) Hand book of applied hydrology. McGraw Hill Book Co., New York, pp.4–76.

    Google Scholar 

  • Tangri, A.K. Kumar, D. Dubey, C. A. and Singh, D.S. (2018). The Gomati River: Lifeline of Central Ganga Plain. In: Dhruv Shen Singh (Eds.), The Indian River: Scientific and socio economic Aspects, Springer Hydrogeology, pp.135–150.

    Google Scholar 

  • Trivedi, A., Singh, D.S., Chauhan, M.S., Arya, A., Bhardwaj, V. and Awasthi, A. (2011) Vegetation and climate change around Ropan Chhapra Tal In Deoria district, The Central Ganga Plain during the last 1350 years. Jour. Palaeont. Soc. India, v.56(1), pp.39–43.

    Google Scholar 

  • Umrikar, B.N. (2017) Morphometric analysis of Andhale watershed, Taluka Mulshi, District Pune, India. Applied Water Science, v.7, pp.2231–2243.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhirendra Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Singh, D.S., Prajapati, S.K. et al. Morphometric Parameters and Neotectonics of Kalyani River Basin, Ganga Plain: A Remote Sensing and GIS Approach. J Geol Soc India 91, 679–686 (2018). https://doi.org/10.1007/s12594-018-0923-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-018-0923-9

Navigation