Journal of the Geological Society of India

, Volume 91, Issue 3, pp 363–372 | Cite as

Geology and Petrology of the Intraplate Cenozoic Continental Basalts in the Transcaucasian Intermountain Area (Georgia)

Research Articles
  • 11 Downloads

Abstract

The Transcaucasian intermountain area is part of the Caucasus segment of the Alpine-Mediterranean mountain belt. The continental intraplate basalts of the study area range in age from 6.10 ± 0.20 to 6.40 ± 0.20 Ma. The basalt erupted from monogenetic volcanoes are formed by lava flows and their pyroclastic equivalents. They are generally characterized by low volumes, are predominantly subalkalic with minor alkaline composition. The ultramafic xenoliths have not been identified in the basalts. The basalts may be subdivided into porphyritic and oligophyric groups. Fractional crystallization plays an important role in the petrogenesis of basalts. Almost all the studied samples showed different degrees of fractionation of olivine ± plagioclase ± clinopyroxene. No significant contamination of basalts with upper continental crustal material was confirmed by Rb/Sr and Rb/Ba ratios or by Sr, Nd isotopic and geochemical composition (87Sr/ 86Sr = 0.703683-0.704531±2; 143Nd/144Nd = 0.512788-0.512848 ±10; 147Sm/144Nd = 0.1036-0.1144 ±2-3). The studied basalts display, compared to heavy rare earth elements (HREE), highly fractionated light rare earth elements (LREE) with La/Yb=9.25-24.00. This makes them similar to ocean island basalts (OIB), which is also evidenced by Ce/Pb, La/Nb, Zr/Nb, Zr/Y ratios. The Dy/Yb-La/Yb and Yb-La/Yb and 87Sr/86Sr-143Nd/144Nd ratios indicating a “mixed” evolution of basalt-forming magmas. The basalt feeding magma chambers of the Transcaucasian intermountain area seem to be formed from a mixture of partial melting of Normal-MORB (Mid-Ocean Ridge Basalt) type upper mantle (garnet and spinel lherzolite) and EMII type components with strong ocean island basalts (OIB)-like signature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Aal M. Abdel-Karim, EI-Nuri, M. Ramadan, Mohamed, R. Embashi (2013) Multiphase Alkaline Basalts of Central Al-Haruj Al-Abyad of Libya: Petrological and Geochemical Aspects. Jour. Geol. Res., v.2013, 12p.Google Scholar
  2. Abdel-Fattah, M.-A.R., Lease, N.A. (2012) Petrogenesis of Cenozoic mafic–ultramafic alkaline lavas from the Tigris volcanic field, NE Syria. Geol. Mag., v.149(1), pp.1–18.CrossRefGoogle Scholar
  3. Aldanmaza, E., Pearcea, J.A., Thirlwallb, M.F., Mitchel, J.G. (2000) Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia,Turkey. Jour. Volcanol. Geotherm. Res., v.102(1-2), pp.67–95.CrossRefGoogle Scholar
  4. Aldanmaz, E., Kopru, basi N., Gurer, O.F., Kaymakci N., Gourgaud A. (2006) Geochemical constraints on the Cenozoic, OIB-type alkalinevolcanic rocks of NW Turkey: Implications for mantle sources and melting processes. Lithos v.86(1-2), pp.50–76.CrossRefGoogle Scholar
  5. Alex, J., McCoy-West., Baker, J.A., Faure, K; Wysoczanski, R. (2010) Petrogenesis and Origins of Mid-Cretaceous Continental Intraplate Volcanism in Marlborough, New Zealand: Implications for the Long-lived HIMU Magmatic Mega-province of the SW Pacific. Jour. Petrol., v.51, pp.2003–2045.CrossRefGoogle Scholar
  6. Alpaslan, M. (2007) Early to Middle Miocene intra-continental basaltic volcanism in the northern part of the Arabian plate, SE Anatolia, Turkey: geochemistry and petrogenesis. Geol. Magz., v.144, pp.867–882.Google Scholar
  7. Altherr, R., Henjes-Kunst, F., Baumann, A. (1990) Asthenosphere versus lithospere as possible sourses for basaltic magmas erupted during formation of the Red See: contraints from Sr, Pb and Nd isitopes. Earth Planet. Sci. Lett., v.96, pp.269–286CrossRefGoogle Scholar
  8. Baker, A., Menzies, M.A., Thirlwall, M.F., Macpherson, C. (1997) Petrogenesis of Quaternary IntraplateVolcanism, Sana’a, Yemen: Implications for Plume–Lithosphere Interaction and Polybaric Melt Hybridization. Jour. Petrol., v.38(10), pp.1359–1390CrossRefGoogle Scholar
  9. Ballmer, M.D., Conrad, C.P., Smith, E.I., (2012) Basaltic continental intraplate volcanism as sustained by shear-driven upwelling. EGU General Assembly, held 22-27 April in Vienna, Austria, 3273.Google Scholar
  10. Bartnitsky, Y.N., Dudauri, O., Stepanyuk, L. (1990) Geochronology of phanerozoic granitoids from folded areas of eastern Europe. Isotopes in Nature. Leipzig, 1-10.Google Scholar
  11. Blusztajn, J., Hart, S.R., Shimizu, N., McGuire, A.V. (1995) Trace-element and isotopic characteristics of spinel peridotite xenoliths from Saudi Arabia. Chemical Geol., v.123, pp.53–65.CrossRefGoogle Scholar
  12. Bogaard, P.J.F., Wörner, G. (2003) Petrogenesis of Basanitic to Tholeiitic Volcanic Rocks from the Miocene Vogelsberg, Central Germany. Jour. Petrol., v.44(3), pp.569–602.CrossRefGoogle Scholar
  13. Cohen, R.S., O’Nions, R.K. and Dawson, J.B. (1984) Isotope geochemistry of xenoliths from East Africa: implications for development of mantle reservoirs and their interaction. Earth Planet. Sci. Lett., v.68, pp.209–220.CrossRefGoogle Scholar
  14. Cook, C., Briggs, R., Smith, I.E.M., Maas, R. (2005) Petrology and Geochemistry of Intraplate Basalts in the South Auckland Volcanic Field, New Zealand: Evidence for Two Coeval Magma Suites from Distinct Sources. Jour. Petrol., v.46(3), pp.473–503.CrossRefGoogle Scholar
  15. Cox, K.G., Bell, J.D. and Pankhurst, R.J. (1979) The Interpretation of Igneous Rocks. George, Allen and Unwin, London. 449p.CrossRefGoogle Scholar
  16. Dasgupta, R., Hirschmann, M.M., Smith, N.D. (2007) Partial melting experiments of peridotite CO2 at 3 GPa and genesis of alkalic ocean island basalts. Jour. Petrol., v.48, pp.2093–2124.CrossRefGoogle Scholar
  17. Davidson, J.P. and Wilson, I.R. (1989) Evolution of an alkali basalt–trachyte suite from Jebel Marra volcano, Sudan, through assimilation and fractional crystallisation. Earth Planet. Sci. Lett., v.95, pp.141–160.CrossRefGoogle Scholar
  18. Deniel, C., Vidal, P., Coulon, C., Vellutini, P.J., Piquet, P (1994) Temporal evolution of mantle sources during continental rifting: the volcanism of Djibouti (Afar). Jour. Geophys. Res., v.99, pp.2853–2869.CrossRefGoogle Scholar
  19. Duyverman, H.J., Harris, N.B.W., Hawkesworth, C.J. (1982) Crustal accretion in the Pan-African: Nd and Sr isotope evidence from the Arabian Shield. Earth Planet. Sci. Lett., v.59, pp.315–326.CrossRefGoogle Scholar
  20. Ekstrand, A. and Enkhbaatar, T. (2007) Petrogenesis of Quaternary basalts in southerh Hangay Mountains, Central Mongolia: Mantle sourse and magmatic evolution. 20th Annual Keck Symposium; http://keck.wooster. edu/publications.Google Scholar
  21. Ewart, A. (1982) The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range. In: Thorp, R.S. (ed), Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons, New York, pp.25–95.Google Scholar
  22. Haase, K.M., Mühe, R. and Stoffers, P. (2000) Magmatism during extension of the lithosphere: geochemical constraints from lavas of the Shaban Deep, northern Red Sea. Chemical Geol., v.166, pp.225–239.CrossRefGoogle Scholar
  23. Hegner, E. and Pallister, J.S. (1989) Pb, Sr and Nd isotopic characteristics of Tertiary Red Sea rift volcanics from the central Saudi Arabian coastal plain. Jour. Geophys. Res., v.94(B6), pp.7749–7755.CrossRefGoogle Scholar
  24. Hirose, K. (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys. Res. Lett., v.24, pp.2837–2840.CrossRefGoogle Scholar
  25. Hirschmann, M.M., Kogiso, T., Baker, M.B. and Stolper, E.M. (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, v.31, pp.481–484CrossRefGoogle Scholar
  26. Humphreus, E.R. and Niu, Y. (2009) On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos, v.112, pp.118–136.CrossRefGoogle Scholar
  27. Irvine, T.N. and Baragare, W.R.A. (1971) A guide to the chemical classification of the common volcanic rocks. Can. Jour. Earth Sci., v.8, pp.523–548CrossRefGoogle Scholar
  28. Irving, A.J. and Perece, C. (1981) Geochemistry and evolution of lherzolitebearing phonolitic lavas from Nigeria, Australia, East Germany and New Zealand. Geochim. Cosmochim. Acta, v.45, pp.1309–1320CrossRefGoogle Scholar
  29. Keskin, M., Chugaev, A.V., Lebedev, V.A., Sharkov, E.V., Oyan, V., Kavak, O. (2012) The geochronology and origin of mantle sources for late cenozoic intraplate volcanism in the frontal part of the Arabian plate in the Karacadað neovolcanic area of Turkey. Part 2. The results of geochemical and isotope (Sr-Nd-Pb) studies. Jour. Volcanol. Seismolo., v.6, pp.361–382.CrossRefGoogle Scholar
  30. Krienitz, M.S., Haase, K.M., Mezger, K., Eckardt, V., Shaikh-Mashail, M.A. (2006) Magma genesis and crustal contamination of continental intraplate lavas in northwestern Syria. Contrib. Mineral. Petrol., v.151, pp.698–716.CrossRefGoogle Scholar
  31. Krienitz, M.S., Haase, K.M., Mezger, K; Shaikh-Mashail, M.A. (2007) Magma genesis and mantle dynamics at the Harrat Ash Shamah volcanic field (southern Syria). Jour. Petrol., v.48, pp.1513–1542.CrossRefGoogle Scholar
  32. Lease, N.A., Abdel-Rahman, A.F.M. (2008) The Euphrates volcanic field, northeastern Syria: petrogenesis of Cenozoic basanites and alkali basalts. Geol. Magz., v.145(5), pp.685–701.Google Scholar
  33. Le bas, M., Le Maitre, R., Streckeisen, A., Zanettin, B. (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. Jour. Petrol., v.27, pp.745–750.CrossRefGoogle Scholar
  34. Lebedev, B.A., Chernishcev, I.B., Chugaev, A.B., Dudauri, O.Z., Vashakidze, G.T. (2006) K-Ar age and Sr–Nd isotopic sistematic Subalcaline bazalts of Zentral-Georgian Neovolcanic area (Great Cavcasus). Reports of the Academy of Sciences. Jour. Geochem., v.408(4), pp.1–6.Google Scholar
  35. Lucassen, F., Franz, G., Romer, R.L., Pudlo, D., Dulski, P. (2008) Nd, Pb, and Sr isotope composition of Late Mesozoic to Quaternary intra-plate magmatism in NE Africa (Sudan, Egypt): high-µ signatures from the mantle lithosphere. Contrib. Mineral. Petrol., v.156, pp.765–784.CrossRefGoogle Scholar
  36. Ma, G.S.-K., Malpas, J., Xenophontos, C., Chan, G.H.N. (2011) Petrogenesis of Latest Miocene–Quaternary Continental Intraplate Volcanism along the Northern Dead Sea Fault System (Al Ghab–Homs Volcanic Field), Western Syria: Evidence for Lithosphere–Asthenosphere Interaction. Jour. Petrol., v.52, pp.401–430.CrossRefGoogle Scholar
  37. Ma, G.S.-K., Malpas, J., Suzuki, K., Lo, CH., Wang, K.L., Iizuka, Y., Xenophontos, C. (2013) Evolution and origin of the Miocene intraplate basalts on the Aleppo Plateau, NW Syria., Chem. Geol., v.335, pp.149–171CrossRefGoogle Scholar
  38. McDonough, W. F. and Sun, S.-S. (1995) The composition of the Earth. Chemical Geol., v.120, pp.223–253CrossRefGoogle Scholar
  39. Mcdonough, W. F., Mcculloch, M. T., Sun, S. (1985) Isotopic and geochemical systematics in Tertiary-Recent basalts from southeastern Australia and implications for the evolution of the sub-continental lithosphere. Geochim. Cosmochim. Acta. v.49, pp.2051–2067.CrossRefGoogle Scholar
  40. McGuire, A. V., Stern, R. J. (1993) Granulite xenoliths from western Saudi Arabia: the lower crust of the late Precambrian Arabian–Nubian Shield. Contrib. Mineral. Petrol., v.114, pp.395–408CrossRefGoogle Scholar
  41. McKenzie, D.P. and O’Nions, R.K. (1991) Partial melt distribution from inversion of rare earth element concentrations. Jour. Petrol., v.32, pp.1021–1091.CrossRefGoogle Scholar
  42. Meschede M. (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the 2Nb-Zr/4-Y diagram. Chemical Geol., v.56(3-4), pp.207–218.CrossRefGoogle Scholar
  43. Miyashiro, A. (1974) Volcanic rock series in island arcs and active continental margins. Amer. Jour. Sci., v.274, pp.321–355.CrossRefGoogle Scholar
  44. Pilet, S., Baker, M.B., Stolper, E.M. (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science, v.320, pp.916–919.CrossRefGoogle Scholar
  45. Pouclet, A., Bellon, H. (1992) Geochemistry and isotopic composition of volcanic rocks from the Yamato basin: hole 794D, Sea of Japan1. Proceedings of the Ocean Drilling Program, Scientific Results, v.127/128, Pt. 2, pp.779–789.Google Scholar
  46. Shaw, J. E., Baker, J. A., Menzies, M. A., Thirlwall, M. F., Ibrahim, K.M. (2003) Petrogenesis of the largest intraplate volcanic field on the Arabian Plate (Jordan): a mixed lithosphere–asthenosphere source activated by lithospheric extension. Jour. Petrol., v.44, pp.1657–1679.CrossRefGoogle Scholar
  47. Shaw, J. E., Baker, J. A., Kent, A. J. R., Ibrahim, K. M., Menzies, M. A. (2007) The geochemistry of the Arabian lithospheric mantle - a Source for intraplate volcanism? Jour. Petrol., v.48, pp.1495–1512CrossRefGoogle Scholar
  48. Shilling, J.G., Kingsley, R.H., Hanan, B.B; McCully, B.L. (1992) Nd–Sr–Pb isotopic variations along the Gulf of Aden: evidence for Afar mantle plume–continental lithosphere interaction. Jour. Geophys. Res., v.97(10), pp.927–10,966.Google Scholar
  49. Skhirtladze, N. (1958) Post-Paleogenic Effusive Volcanism of Georgia., Tbilisi. p.333.Google Scholar
  50. Skhirtladze, N., Vinogradov, V., Tutberidze, B., Dudauri, O. (1990) Isotopic content of Sr in the young volcanics of Georgia. Acad. Sci. Georgia, v.139, pp.349–352.Google Scholar
  51. Stein, M., Hofmann, A. W. (1992) Fossil plume head beneath the Arabian lithosphere? Earth Planet. Sci. Lett., v.114, pp.193–209.CrossRefGoogle Scholar
  52. Stein, M. and Goldstein, S. L. (1996) From plume head to continental lithosphere in the Arabian–Nubian shield. Nature, v.382. pp.773–778.CrossRefGoogle Scholar
  53. Sun, S.-S. and McDonough, W. F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D. & Norry, M. J. (Eds.), Magmatism in the Ocean Basins. Geol. Soc. London, Spec. Publ., no.42, pp.313–345.CrossRefGoogle Scholar
  54. Suzanne, Y., O’Reilly, S.Y., Zhang, M. (1995) Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: Connections with the subcontinental lithospheric mantle? Contrib. Mineral. Petrol., v.121(2), pp.148–170.CrossRefGoogle Scholar
  55. Taylor, S.R., McLennan, S.M. (1985) The Continental Crust: its Composition and Evolution. Oxford: Blackwell Science.Google Scholar
  56. Thirlwall, M.F., Upton, B.G.J., Jenkins, C. (1994) Interaction between continental lithosphere and the Iceland plume—Sr–Nd–Pb isotope chemistry of Tertiary basalts, NE Greenland. Jour. Petrol., v.35, pp.839–879.CrossRefGoogle Scholar
  57. Timm, C., Hoernle, K., Van Den Bogaard, P., Bindeman, I., Weaver, S. (2009) Geochemical Evolution of Intraplate Volcanism at Banks Peninsula, New Zealand: Interaction Between Asthenospheric and Lithospheric Melts Jour. Petrol., v.50, pp.989–1023.CrossRefGoogle Scholar
  58. Togonidze, M., Dudauri, O. (2000) Petrology and Geochronology of Granitoides of the Dzirula crystalline massif. Transactions of the scientific session dedicated to the 110th anniversary of academician A. Janelidze.Google Scholar
  59. Tutberidze, B. (2004) Geology and Petrology of the Late Orogenic Magmatism of the Central Part of the Caucasian Segment. Tbilisi, 339p.Google Scholar
  60. Tutberidze, B. (2012) Cenozoic Volcanism of the Caucasian Mobile Belt in Georgia, its Geological-Petrological Peculiarities and Geodynamic Conditions.Turkish Jour. Earth Sci., v.21, pp.799–815.Google Scholar
  61. Volker, F., McCulloch, M. T., Altherr, R. (1993) Submarinebasalts from the Red Sea: new Pb, Sr, and Nd isotopic data. Geophys. Res. Lett., v.20, pp.927–930.CrossRefGoogle Scholar
  62. Zhang, J.J., Zheng, Y.F., Zhao, Z.F. (2009) Geochemical evidence for interaction between oceanic crust and lithospheric mantlein the origin of Cenozoic continental basalts in east-central China, Lithos v.110, pp.305–326.CrossRefGoogle Scholar
  63. Zindler, A. and Hart, S.R. (1986) Chemical geodynamics. Jour. Earth Planet. Sci., v.14, pp.493–571.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2018

Authors and Affiliations

  1. 1.Department of GeologyIvane Javakhishili Tbilisi State UniversityTbilisiGeorgia

Personalised recommendations