Journal of the Geological Society of India

, Volume 90, Issue 3, pp 301–311 | Cite as

Identification of landslide susceptible villages around Kalsubai region, Western Ghats of Maharashtra using geospatial techniques

  • Praveen B. Gawali
  • Sainath P. Aher
  • B. V. Lakshmi
  • Ravindra D. Gaikwad
  • K. Deendayalan
  • Pramod T. Hanamgond
  • J. L. V. Mahesh Babu
  • Sandeep A. Arote
  • Shashikant I. Bairage
Research Article


Heavy rainfall triggered landslides are on the rise along the Western Ghats making it a matter of priority to identify landslide-prone areas well in advance. The present effort is aimed at identifying landslide susceptible villages (LSV) around the Kalsubai region of Deccan volcanic province (DVP), Maharashtra, India from 8 weighted landslide parameters- rainfall, slope, lithology, land use and land cover (LULC), soil properties, relative relief, aspect and lineament. These parameters were combined with advanced remote sensing (RS) data and processed in geographical information system (GIS) as well as in image processing software, which are an integral part of geospatial techniques. Out of the total 59 villages, the study identified 9 villages are situated in very high, 13 in high, 12 in moderate, 11 in low and 14 in very low risk zones. Our data reveals incessant heavy rains and steep slopes are the dominant factors in triggering landslides, exacerbated by anthropogenic activity prevalent in the study area. The spatial and non-spatial database created will help to take effective steps in preventing and/or mitigating landslide disasters in the study area. The methodology can be applied to identify other landslide prone areas in a cost effective way.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aher, S.P., Parande, A. N. and Deshmukh, P. P. (2011) A Geomatics of the Image Processing: Image Georeferencing, National Technical Symposium on Advancements in Computing Technologies, Proceedings published by Int. J. Computer Applications, pp.20–23.Google Scholar
  2. Aher S. P, and Dalvi S. N. (2012) Remote Sensing Technique for Monitoring the Glacier Retreating Process and Climatic Changes Study. Indian Streams Res. Jour., v.2(8), pp.2–6.Google Scholar
  3. Aher S. P, Bairagi S.I, Deshmukh P. P. and Gaikwad R.D. (2012) River change detection and bank erosion identification using topographical and remote sensing data. Int. J. Applied Inf. Sys., v.2(3), pp.1–7.Google Scholar
  4. Aher S. P, Shinde S. D, Jarag A. P, Mahesh Babu J.L.V. and Gawali P. B. (2014) Identification of lineaments in the Pravara basin from ASTERDEM data and satellite images for their geotectonic implication. Int. R. J. Earth Sci., v. 2(7), pp. 1–5.Google Scholar
  5. Ahmed, M.Y., Mohamed Al and Biswajeet, P. (2014). Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosciences Journal, The Association of Korean Geoscience Societies and Springer, DOI 10.1007/s12303-014-0032-8.Google Scholar
  6. Akole. (2014) Rain gauge station: Harichandranagar, Akole.Google Scholar
  7. Arora M. K, Das Gupta A. S, Gupta R. P. (2004). An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int. J. Remote Sens., v.25(3), pp.559–572.CrossRefGoogle Scholar
  8. Athavale, R. N. and Anjaneyulu G. R. (1972). Palaeomagnetic results on the Deccan Trap lavas of the Aurangabad region and their tectonic significance. Tectonophys, v. 14, pp. 87–103.CrossRefGoogle Scholar
  9. Baum, R. L, Savage W. Z. and Godt J. W. (2002) TRIGRS-A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. U.S. Geological Survey Open-File Report 02-0424, 64 pp. Scholar
  10. Beane, J.E., Turner, C.A., Hooper, P.R., Subbarao, K.V. and Walsh, J.N. (1986). Stratigraphy, composition and form of the Deccan basalts, Western Ghats, India. Bulletin of Volcanology, v. 48, pp.61–83.CrossRefGoogle Scholar
  11. Brabb, E. E. (1991) The world landslide problem. Episodes, v.14(1), pp. 52–61.Google Scholar
  12. Burrough, P. A., and McDonell, R. A. (1998) Principles of Geographical Information Systems (Oxford University Press, New York), 190p.Google Scholar
  13. Campanile, D., Nambiar, C.G., Bishop, P., Widdowson, M. and Brown, R. (2008). Sedimentation record in the Konkan–Kerala Basin: Implications for the evolution of the Western Ghats and the Western Indian passive margin. Basin Res.h, v.20, pp.3–22.CrossRefGoogle Scholar
  14. Catherine, J.K. Gahalaut, K. and Gahalaut, V. K. (2007) Role of flexure in earthquake triggering along the Western Ghat escarpment India. Jour.Asian Earth Sci., v.31, pp.104–111.CrossRefGoogle Scholar
  15. Chand, S. and Subrahmanyam, C. (2003) Rifting between India and Madagascar-mechanism and isostacy. Earth Planet. Sci. Lett., v.210, pp.317–332.CrossRefGoogle Scholar
  16. Coe, J.A., Godt, J.W., Baum, R.L., Bucknam, R.C. and Michael, J.A. (2004) Landslide susceptibility from topography in Guatemala. In: Lacerda et al. (Eds.), Landslides evaluation and stabilization. Taylor and Francis Group, London, pp.69–78.Google Scholar
  17. Cox, K.G. and Hawkesworth, C.J. (1985) Geochemical stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with implications for open system magmatic processes. Jour. Petrology, v.26, pp.355–377.CrossRefGoogle Scholar
  18. Cruden D.M., Varnes D. J. (1996). Landslide types and processes. In: Turner A.K. and Shuster R.L. (Eds.), Landslides: Investigation and Mitigation. Transp. Res. Board, Spec. Report, no.247, pp.36–75.Google Scholar
  19. Dai, F.C. and Lee, C.F. (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, v.42, pp.213–238.CrossRefGoogle Scholar
  20. Dai, F.C., Lee, C.F. and Ngai, Y.Y. (2002) Landslide risk assessment and management: an overview. Engg. Geol., v.64, pp.65–87.CrossRefGoogle Scholar
  21. Dattilo, G. and Spezzano, G. (2003). Simulation of a cellular landslide model with CAMELOT on high performance computers. Parallel Comput., v.29, pp.1403–1418.CrossRefGoogle Scholar
  22. Dikau, R., Brunsden, D., Schrott, L. and Ibsen, M.L. (Eds.) (1996) Landslide Recognition: Identification, Movement and Causes. John Wiley and Sons, Chichester. 251p.Google Scholar
  23. EM-DAT. (2010) The OFDA/CRED International Disaster Database. Université Catholique de Louvain. Brussels. Scholar
  24. Ercanoglu, M., Gokceoglu, C. and Asch, T.W.J.V. (2004) Landslide Susceptibility Zoning North of Yenice (NW Turkey) by multivariate statistical techniques. Natural Hazards, v.32, pp.1–23.CrossRefGoogle Scholar
  25. Fabbri, A.G., Chung, C.F., Cendrero, A. and Remondo, J. (2003) Is prediction of future landslides possible with GIS? Natural Hazards, v.30, pp.487–499.CrossRefGoogle Scholar
  26. Fernandez, T., Irigaray, C., El Hamdouni, R. and Chacon, J. (2003) Methodology for landslide susceptibility mapping by means of a GIS, application to the contraviesa area (Granada, Spain). Natural Hazards, v.30, pp.297–308.CrossRefGoogle Scholar
  27. Gokarn, S.G., Gupta, G., Rao, C.K. and Selvaraj, J. (2003) Some interesting observations on the tectonics in the Deccan Volcanic Province observed from magnetotelluric studies. Jour.Virtual Explorer, v.12, pp.55–65.Google Scholar
  28. Gorsevski, P. V, Jankowski, P. and Gessler, P. E. (2006) An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process. Control Cybernetics, v.35(1), pp.21–46.Google Scholar
  29. Gunnell, Y. (2001). Dynamics and kinematics of rifting and uplift at the western continental margin of India: Insights from geophysical and numerical models. Mem. Geol. Soc. India, no.47, pp.475–496.Google Scholar
  30. Gunnell, Y. and Fleitout, L. (2000) Morphotectonic evolution of the Western Ghats India. In: Geomorphology and Global Tectonics (ed.) Summerfield M (Chichester: John Wiley & Sons) pp.321–338.Google Scholar
  31. Gutiérrez, F., Soldati, M., Audemard, F. and Bãlteanu, D. (2010) Recent advances in landslide investigation: Issues and perspectives. Geomorphology, v.124, pp.95–101.CrossRefGoogle Scholar
  32. Ho Jui-Yi, Lee Kwan Tun, Chang Tung-Chiung, Wang Zhao-Yin, Liao Yu-Hsun. (2012) Influences of spatial distribution of soil thickness on shallow landslide prediction. Engg. Geol., v.124, pp.38–46.CrossRefGoogle Scholar
  33. Hong Yang and Adler Robert, F. (2008) Predicting global landslide spatiotemporal distribution: Integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates. Internat. Jour. Sediment Res., v.23, pp.249–257.CrossRefGoogle Scholar
  34. Hungr, O., Evans, S.G., Bovis, M. and Hutchinson, J.N. (2001) Review of the classification of landslides of the flow type. Environ. Engg. Geosci., VII, pp.221–238.CrossRefGoogle Scholar
  35. Joshi, V. U. and Nagare, V. (2009) Land-use change detection along the Pravara River basin in Maharashtra, using Remote Sensing and GIS techniques. AGD Landscape and Environment, v.3(2), pp.71–86.Google Scholar
  36. Kailasam, L.N. (1975) Epeirogenic studies in India with reference to vertical movements. Tectonophysics, v.29, pp.505–521.CrossRefGoogle Scholar
  37. Kale, Vishwas, S. and Shejwalkar, N. (2008) Uplift along the western margin of the Deccan Basalt Province: Is there any geomorphometric evidence? Jour. Earth Syst. Sci., v.117(6), pp.959–971.CrossRefGoogle Scholar
  38. Keefer, D.K. and Wilson, R.C. (1987) Real-time landslide warning during heavy rainfall. Science, v.238(13), pp.921–925.CrossRefGoogle Scholar
  39. Kuriakose, S.L., Sankar, G. and Muraleedharan, C. (2009) History of landslide susceptibility and a chorology of landslide-prone areas in the Western Ghats of Kerala, India. Environ. Geol., v.57, pp.1553–1568.CrossRefGoogle Scholar
  40. Larsen, M.C. and Torres Sanchez, A.J. (1998) The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology, v.24, pp.309–331.CrossRefGoogle Scholar
  41. Lee S. and Min K. (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ. Geol., v.40, pp.1095–1113.CrossRefGoogle Scholar
  42. Lightfoot, P.C., Hawkesworth, C.J., Devey, C.W., Rogers, N.W. and van Calsteren, P.W.C. (1990) Source and differentiation of Deccan Trap lavas: implications of geochemical and mineral chemical variations. Jour. Petrol., v.31, pp.1165–1200.CrossRefGoogle Scholar
  43. Mahadevan, T.M. and Subbarao, K.V. (1999). Sesmicity of the Deccan Volcanic Province–An evaluation of some endogenous factors; In: K.V. Subbarao (Ed.), Deccan Volcanic Province. Mem. Geol. Soc. India, no.43, pp.453–484.Google Scholar
  44. Mathew John, Jha, V.K. and Rawat, G.S. (2007) Weights of evidence modelling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Curr. Sc., v.92(5), pp.628–638.Google Scholar
  45. Mathur, S.M. (1991) Physical Geology of India, National book trust, New Delhi, pp.83–84.Google Scholar
  46. Mishra, D.C., Laxman, G. and Arora, K. (2004) Large-wavelength gravity anomalies over the Indian continent: Indicators of lithospheric flexure and uplift and subsidence of Indian Peninsular Shield related to isostasy. Curr. Sci., v.86, pp.861–867.Google Scholar
  47. Mukhopadhyay, R., Rajesh, M., De, S., Chakraborty, B. and Jauhari, P. (2008) Structural highs on the western continental slope of India: Implications for regional tectonics. Geomorphology, v.96, pp.48–61.CrossRefGoogle Scholar
  48. Pasuto, A. and Soldati, M. (1996) Landslide hazard. In: Panizza, M. (Ed.), Environmental Geomorphology, Amsterdam, pp.64–88.Google Scholar
  49. Paul D.K., Ray A., Das B., Patil S.K. and Biswas S.K. (2008) Petrology, geochemistry and paleomagnetism of the earliest magmatic rocks of Deccan Volcanic Province, Kutch, Northwest India. Lithos, v.102(1), pp.237–259.CrossRefGoogle Scholar
  50. Peng, Z.X., Mahoney, J.J., Hooper, P.R., Harris, C., Beane, J.E. (1994) A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan Traps. Geochimica et Cosmochimica Acta, v.58, pp.267–288.CrossRefGoogle Scholar
  51. Peshwa, V.V. and Kale, V.S. (1987) Role of remote sensing in the detection of potential sites for landslides/rockfalls in the Deccan Trap lava terrain of western India. Environmental Geotechnics and Problematic Soils and Rocks; Balkema, Rotterdam; pp.367–374.Google Scholar
  52. Pourghasemi, H.R., Pradhan, B., Gokceoglu, C., and Moezzi, K.D. (2012) Landslide Susceptibility Mapping Using a Spatial Multi Criteria Evaluation ModelatHaraz Watershed, Iran. Terrigenous Mass Movements, Chapter 2, pp.23–49. DOI: 10.1007/978-3-642-25495-6_2.CrossRefGoogle Scholar
  53. Powar, K.B. (1981). Lineament fabric and dyke pattern in the western part of the Deccan Volcanic Province. Mem. Geol. Soc. India, no.3, pp.45–57.Google Scholar
  54. Powar, K.B. (1993) Geomorphological evolution of Konkan coastal belt and adjoining Sahyadri uplands with reference to Quaternary uplift. Curr. Sci., v.64, pp.793–796.Google Scholar
  55. Radhakrishna, B.P. (1993) Neogene uplift and geomorphic rejuvenation of the Indian peninsula; Curr. Sci., v.64, pp.787–793.Google Scholar
  56. Radhakrishna, B.P. (2001) The Mysore plateau: Its structural and physiographical evolution: Bull. Mysore Geologists Association, v.3, pp. 1–53 (1954); reprinted in Gunnell Y., and Radhakrishna B.P., eds., Sahyadri: The great escarpment of the Indian subcontinent: Bangalore. Mem. Geol. Soc. India, no.47(1-2), pp.71-82.Google Scholar
  57. Radhakrishna, B.P. (1989) Suspect tectono-stratigraphic terrane elements in the Indian subcontinent. Jour. Geol. Soc. India, v.34, pp.1–24.Google Scholar
  58. Saha, A.K., Gupta, R.P., Sarkar, I, Arora, M.K. and Csaplovics, E. (2005) An approach for GIS-based statistical landslide susceptibility zonation-with a case study in the Himalayas. Landslides, v.2, pp.61–69.CrossRefGoogle Scholar
  59. Sajinkumar, K.S., Anbazhagan, S., Pradeepkumar, A.P., Rani, V.R. (2011) Weathering and landslide occurrences in parts of Western Ghats, Kerala. Jour. Geol. Soc. India, v.78(3), pp.249–257.CrossRefGoogle Scholar
  60. Sheth, H.C. (2007) Plume-related regional pre-volcanic uplift in the Deccan Traps: Absence of evidence, evidence of absence. In: Plates, Plumes, and Planetary Processes (Eds) Foulger G.R. and Jurdy D.M. Geol. Soc. Amer. Spec. Pap., v.430, pp.785–813.Google Scholar
  61. Singh, Yudhbir, Vinay Sharma, S.K., Pandita, G.M., Bhat, K.K. and Thakur, Sham S. Kotwal. (2014) Investigation of Landslide at Sangaldan Near Tunnel-47, on Katra-Qazigund Railway Track, Jammu and Kashmir. Jour. Geol. Soc. India, v.84, pp.686–692.CrossRefGoogle Scholar
  62. Somayajulu, B.L.K., Martin, J.M., Eisma, D., Thomas, A.J., Borole, D.V. and Rao, K.S. (1993) Geochemical studies in the Godavri estuary, India. Mar. Chem., v.43, pp. 83–93.Google Scholar
  63. Subbarao, K.V. (ed.) (1988). Deccan Flood Basalts. Mem. Geol. Soc. India, no.10, pp.393.Google Scholar
  64. Subbarao, K.V. and Hooper, P.R. (1988). Reconnaissance map of the Deccan Basalt Group in the Western Ghats, India. Mem. Geol. Soc. India, no.10, pp.Google Scholar
  65. Subrahmanya, K.R. (1998) Tectono-Magmatic Evolution of the West Coast of India; Gondwana Res., v.1, pp.319–327.CrossRefGoogle Scholar
  66. Sundarajan, P. and Sajinkumar, K.S. (2012). Detailed site specific study of KunnamangalamVayal landslide, Wayanad district, Kerala. Geol. Surv. India, v.42 (unpublished report).Google Scholar
  67. Terlien, M.T.J. (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds, Environ. Geol., v.35, pp.124–130.CrossRefGoogle Scholar
  68. Thigale, S.S. (1983) Impact of physical determinants on groundwater occurrence in the aggraded land-on groundwater occurrence in the aggraded landforms associated with the Western Ghats of Maharashtra, India. Proc. Internat. Conf. Groundwater and Man, Sidney, v.3, pp.319–327.Google Scholar
  69. Thigale, S.S. and Umrikar, B. (2007). Disastrous landslide episode of July 2005 in the Konkan plain of Maharashtra, India with special reference to tectonic control and hydrothermal anomaly. Curr. Sci., v.92(3), p.383–386.Google Scholar
  70. Thigale, S.S. and Khandge Abhijit, S. (1996) Generation of database for preparation of landslide hazard zonation map of the Western Chats of Maharashtra, India. Geoinformatics, v.7(1-2), pp.61–68.CrossRefGoogle Scholar
  71. Thorat, S.K., Deshmukh, P.P., Aher, P.P., Wawale, S.G. and Aher, S.P. (2012) Opportunities of agro-tourism in Akole tehsil of Ahmednagar district. Golden Research Thoughts, v.1(7), pp.1–4.Google Scholar
  72. Tiwari, P.K., Surve, G. and Mohan, G. (2006) Crustal constraints on the uplift mechanism of the Western Ghats of India. Geophys. Jour. Internat., v.167, pp.1309–1316.CrossRefGoogle Scholar
  73. Valdiya, K.S. (2001) Tectonic resurgence of the Mysore plateau and surrounding regions in cratonic southern India. Curr. Sci., v.81, pp.1068–1089.Google Scholar
  74. Veeraswamy, K. and Raval, U. (2005). Remobilization of the palaeoconvergent corridors hidden under the Deccan trap cover and some major stable continental region earthquakes; Curr. Sci., v.89 pp.522–530.Google Scholar
  75. Wadia, D.N. (1975) Geology of India, fourth ed., Tata McGraw-Hill, New Delhi, p.508.Google Scholar
  76. Widdowson, M. (1997) Tertiary palaeosurfaces of the SW Deccan western India: Implications for passive margin uplift; In: Widdowson M. (Ed.), Palaeosurfaces: Recognition reconstruction and palaeoenvironmental interpretation. Geol. Soc. London, Spec. Publ., v.120, pp.221–248.Google Scholar
  77. Widdowson, M. and Cox K. G. (1996) Uplift and erosional history of the Deccan Traps India: Evidence from laterites and drainage patterns of the Western Ghats and Konkan coast. Earth Planet. Sci. Lett., v.137, pp. 57–69.Google Scholar
  78. Widdowson, M. and Mitchell, C. (1999). Large-scale stratigraphical, structural, geomorphological constraints for earthquakes in the southern Deccan Traps India: The case for denudationally driven sesmicity. In: K.V. Subbarao (Ed.) Deccan Volcanic Province. Mem. Geol. Soc. India, no.43, pp.245–274.Google Scholar
  79. Wilson, R.C. and Wieczorek, G. F. (1995) Rainfall thresholds for the initiation of debris flows at La Honda, California. Environ. Engg. Geoscience, v.1(1), pp.11–27.CrossRefGoogle Scholar
  80. Yang, H., Robert, A. and George, H. (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility, natural hazards, DOI 10.1007/s11069-006-9104-z.Google Scholar

Copyright information

© Geological Society of India 2017

Authors and Affiliations

  • Praveen B. Gawali
    • 1
  • Sainath P. Aher
    • 2
  • B. V. Lakshmi
    • 1
  • Ravindra D. Gaikwad
    • 2
  • K. Deendayalan
    • 1
  • Pramod T. Hanamgond
    • 3
  • J. L. V. Mahesh Babu
    • 1
  • Sandeep A. Arote
    • 4
  • Shashikant I. Bairage
    • 2
  1. 1.Indian Institute of GeomagnetismNew Panvel, Navi MumbaiIndia
  2. 2.Department of GeographySangamner CollegeSangamner, District AhmednagarIndia
  3. 3.Department of GeologyGSS CollegeBelgaumIndia
  4. 4.Department of PhysicsSangamner CollegeSangamner, District AhmednagarIndia

Personalised recommendations