Journal of the Geological Society of India

, Volume 87, Issue 4, pp 383–396 | Cite as

Integrated geophysical and geological studies for mineral prospecting in Betul-Chhindwara belt (BCB), Central India

  • Dewashish Kumar
  • D. V. Subba Rao
  • K. Sridhar
  • M. Satyanarayanan
  • Prasanta K. Patro
Research Articles


Integrated study combining high resolution electrical resistivity tomography and time domain induced polarization was carried out in Betul-Chhindwara belt Madhya Pradesh, Central India in order to evaluate and delineate the polymetallic sulphide mineralization, its nature, type of deposit and depth. On interpretation of the models results clear cut anomalies revealed showing chargeability ∼2 to 54 mV/V up to a maximum depth of 131m. This range of chargeability signify signature of metallic conductor. Nevertheless the basement rock is clearly mapped, showing substantial resistivity contrast. In addition detailed analysis of the integrated results from geology, geochemistry and Scanning Electron Microscope–Energy Dispersive X-ray Spectroscopy resulted from in situ rock samples shows good correlation with resistivity and IP results. This integrated study confirms the presence of conducting sulphide mineral ore body and the results and findings need test drilling at the geophysical anomalous site(s) to confirm the depth persistence and evaluate the metallic conductor.


Mafic-Ultramafic rocks Resistivity TDIP Sulphide mineralization Central India Madhya Pradesh 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABEM (2012) ABEM Instruction Manual–Terrameter LS, pp.110.Google Scholar
  2. Bhattacharya, P.K. and Patra, H.P. (1968)Direct Current Geoelectric Sounding, Principles and Interpretation, Methods in Geochemistry and Geophysics, Series-9. Elsevier Publishing Company, 135p.Google Scholar
  3. Bertin, J. and Loeb, J. (1976) Experimental and Theoretical Aspects of Induced Polarization, Presentation and Application of the IP Method Case Histories, v.1, Geoexploration Monographs, series.1, no.7, pp.1–250.Google Scholar
  4. Chaturvedi, R.K. (2001) A review of the Geology, Tectonic features and tectono-lithostratigraphy of Betul Belt, Geol. Surv. India Spec. Publ., no.64, pp.99–315.Google Scholar
  5. Dahlin T., Leroux V. and Nissen J. (2002) Measuring techniques in induced polarisation imaging. Jour. Applied Geophys., v.50(3), pp.279–298.CrossRefGoogle Scholar
  6. Dahlin, T. and Zhou, B. (2006) Multiple-gradient array measurements for multichannel 2D resistivity imaging, Near Surf. Geophys., v.4, pp.113–123. doi:10.3997/1873-0604.2005037.Google Scholar
  7. Dahlin, T. and Leroux, V. (2012) Improvement in time-domain induced polarization data quality with multi-electrode systems by separating current and potential cables, Near Surface Geophysics, v.10(6), pp.45–565.Google Scholar
  8. Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E. and Christiansen, A.V. (2013) Data repeatability and acquisition techniques for time-domain spectral induced polarization. Near Surface Geophysics, v.11, pp.91–406.CrossRefGoogle Scholar
  9. Ghosh, K.K., Raj, J. and Nandy, K. (1998) On the intrusive suite from Bilaspur, Madhya Pradesh, Jour. Geol. Soc. India, v.51, pp.7–102.Google Scholar
  10. Ghosh, B. and Praveen, M.N. (2008) Indicator minerals as guides to base metal sulphide mineralization in Betul Belt, central India. Jour. Earth Syst. Sci, v.117(4), pp.21–536.Google Scholar
  11. Ghosh, B., Praveen, M.N. and Shrivastava, H.S. (2006) Gahnite chemistry from metamorphosed Zn-Pb-Cu sulphide occurrences of Betul Belt, Central India, Jour. Geol. Soc. India, v.67, pp.17–20.Google Scholar
  12. Godel, B., Barnes, S.J. and Maier, W.D. (2006) 3-D Distribution of Sulphide Minerals in the Merensky Reef (Bushveld Complex, South Africa) and the J-M Reef (Stillwater Complex, USA) and their Relationship to Microstructures Using X-Ray Computed Tomography, Jour. Petrol., v.47(9), pp.1853–1872.CrossRefGoogle Scholar
  13. Grant, F.S. and West, G.F. (1965) Interpretation Theory in Applied Geophysics, McGraw Hill Book Company, 583p.Google Scholar
  14. Koefoed, O. (1979) Geosounding Principles 1: Resistivity Sounding Measurements, Elsevier Scientific Publishing Company, 276p.Google Scholar
  15. Kumar, D. (2012) Efficacy of Electrical Resistivity Tomography technique in Mapping Shallow Subsurface Anomaly. Jour. Geol. Soc. India, v.80(3), pp.04–307.CrossRefGoogle Scholar
  16. Loke, M.H. (1997) Electrical imaging surveys for environmental and engineering studies: A practical guide to 2-D and 3-D surveys, 61p.Google Scholar
  17. Loke, M.H. (2004) Tutorial 2-D and 3-D electrical imaging surveys, pp.1–128.Google Scholar
  18. Loke, M.H., Wilkinson, P.B. and Chambers, J.E. (2010) Parallel computation of optimized arrays for 2-D electrical imaging surveys, Geophys. Jour. Internat., v.183, pp.302–1315.Google Scholar
  19. Loke, M.H. (2012) 2D and 3D Resistivity/IP inversion and forward modeling, Geotomo Software Penang, Malaysia.Google Scholar
  20. Mahakud, S.P., Raut, P.K., Hansda, C., Ramteke, P.F., Chakraborty, U., Praveen, M.N., and Sisodiya, D.S. (2001) Sulphide mineralisation in the central part of Betul Belt around Ghisi-Muariya-Koparpani area, Betul district, Madhya Pradesh. Geol. Surv. India Spec. Publ, v.64, pp.377–385.Google Scholar
  21. Mahakud, S.P. and Raut, P.K. (2001) Sulphide Mineralization in the central part of Betul Belt around Ghisi-Mauriya-Koparpani area, Betul District, Madhya Pradesh, Geol. Surv. India Spec. Publ., no.64, pp.77–385.Google Scholar
  22. Parasnis, D.S. (1986) Principles of applied geophysics. 4th edn. Chapman and Hall, London, UK, 402p.CrossRefGoogle Scholar
  23. Praveen, M.N. and Ghosh, B. (2009) Submarine volcanic facies and its implication as possible tracer of sulphide mineralization a study from Jilharidev area, Betul belt Central India. Curr. Scie., v.97(5), pp.70–679.Google Scholar
  24. Praveen, M.N. and Ghosh, B. (2007) Multiple origins of gahnite associated with hydrothermal alteration from the Bhuyari base metal prospect of Proterozoic Betul Belt, Central India. Jour. Geol. Soc. India, v.69, pp.233–241.Google Scholar
  25. Praveen, M. N., Ghosh, B., Shrivastava, H.S., Dora, M.L. and Gaikwad, L.D. (2007) Sulphide Mineralisation in Betul Belt: Classification and General Characteristics, Jour. Geol. Soc. India, v.69, pp.5–91.Google Scholar
  26. Ramachandra, H.M. and Pal, R.N. (1992) Progress report on study of geology and geochemistry and Cu-Pb-Zn mineralization in Kherli Area, Betul District, M.P., Geol. Surv. India, Unpubld. Prog. Report, p.60.Google Scholar
  27. Ramaprasada Rao, I.B., Nagendra, R., Acharya, Ramesh S. and Bhimasankaram, V.L.S. (1980) Integrated Geophysical Approach in Mineral Exploration–a case study in application and data processing, Dept. of Geophysics, Osmania University, Hyderabad India, pp.1–62.Google Scholar
  28. Reynolds, J.M. (2011) An Introduction to Applied and Environmental Geophysics. John Wiley & Sons, Chichester, 712p.Google Scholar
  29. Roy, A. and Prasad, H.M., 2003. Tectonothermal events in Central Indian Tectonic Zone (CITZ) and its implication in Rhodinian crustal assembly. Jour. Asian Earth Sci., v.22, pp.15–129.CrossRefGoogle Scholar
  30. Roy, A., Chore, S.A., Viswakarma, L.L. and Chakraborty, K. (2004) Geology and petrochemistry of Padhar mafic-ultramafic complex from Betul Belt: A study on arc type magmatism in Central Indian Tectonic Zone, Geol. Surv. India. Spec. Publ., no.84, pp.97–318.Google Scholar
  31. Roy, A., and Chakraborty, K. (2008) Precambrian Mafic-Ultramafic magmatism in Central India Suture Zone, Jour. Geol. Soc. India, v.72, pp.23–140.Google Scholar
  32. Sasaki, Y. (1992) Resolution of resistivity tomography inferred from numerical simulation, Geophys Prospect., v.40, pp.53–464.CrossRefGoogle Scholar
  33. Sharma, R., Murthy, Ch. V.V.S., Mishra, V.P., Nagaraju, B,V., Gouda, H.C. and Singh, R.K. (2008) Structural Study through Aeromagnetic data for mineral prospecting in Betul-Chhindwara area, M.P. Jour. Geol. Soc. India, v.71, pp.15–826.Google Scholar
  34. Sumner, J.S. (1976) Principles of Induced Polarization for Geophysical Exploration, Elsevier publication, pp.1–277.Google Scholar
  35. Telford, W.M., Geldart, L.P., Sheriff, R.E. and Keys, D.A. (1976) Applied Geophysics, Oxford & IBH Publi. Co. Pvt. Ltd. 860p.Google Scholar
  36. Zohdy, A.A.R., Eaton, G.P. and Mabey, D.R. (1974) Application of surface geophysics to groundwater investigation, Techniques of Water Resources Investigations. U.S. Geol. Surv. 116p.Google Scholar

Copyright information

© Geological Society of India 2016

Authors and Affiliations

  • Dewashish Kumar
    • 1
  • D. V. Subba Rao
    • 1
  • K. Sridhar
    • 1
  • M. Satyanarayanan
    • 1
  • Prasanta K. Patro
    • 1
  1. 1.CSIR-National Geophysical Research InstituteHyderabadIndia

Personalised recommendations