Journal of the Geological Society of India

, Volume 85, Issue 2, pp 215–231 | Cite as

Study of calc-silicate rocks of Hammer-Head Syncline from southern Sandmata Complex, northwestern India: implications on existence of an Archaean protolith

  • Ritesh Purohit
  • Dominic Papineau
  • Prakshal Mehta
  • Marilyn Fogel
  • C.V. Dharma Rao
Research Articles
  • 83 Downloads

Abstract

Existence of an Archaean protolith is suggested in present study from an ensemble of rocks named as Sandmata Complex from northwestern India which have a debatable stratigraphic status of Archaean vs. Proterozoic. Rocks of the Sandmata Complex are represented by a highly metamorphosed volcano-sedimentary complex with multiple cycles of deformation. The manifold tectono-thermal events have obscured the pristine character of the protoliths. In this work we present geochemical features of calc-silicate protolith that show consistent Archaean affinity in the Hammer-Head Syncline (HHS) from southern part of the Sandmata Complex. Notable geochemical characteristics of calc-silicate metasediments in the HHS include high Th/U, high Cr concentrations, high La/Th, moderate La/Yb, and weak positive Eu anomaly. Carbon and oxygen stable isotope compositions of these carbonate metasediments vary between -3.0 and -0.3‰ (δ13Ccarb),- 11.6 and -35.0 (δ13Corg) and -19.1 and -13.4‰, (δ18O) respectively. These geochemical observations are in conjunction with the recently published Neoarchaean ages from the HHS and the proximal Hooke syncline.

Keywords

Sandmata Complex Archaean Protolith Petrology Geochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrens, L.H. (1953) The use of ionization potentials II. Anion affinity and geochemistry. Geochim. Cosmochim. Acta, v.3, pp.11.Google Scholar
  2. Bavinton, A.O. and Taylor, S.R. (1980) REE abundances in in Archaean metasediments from Kambalda, Western Austarlia. Geochim. Cosmochim. Acta, v.44, pp.639–648.CrossRefGoogle Scholar
  3. Bhowmik, S.K., Bernhardt, Heinz-J, and Dasgupta, S. (2010) Grenvillian age high-pressure upperamphibolite-granulite metamorphism in the Aravalli-Delhi Mobile Belt, Northwestern India: New evidence from monazite chemical age and its implication. Precambrian Res., v.178, pp.168–184.CrossRefGoogle Scholar
  4. Bhowmik, S.K., Saha, L., Dasgupta, S. and Fukuoka, M. (2009) Metamorphic phase relations in orthopyroxene-bearing granitoids: implication for high-pressure metamorphism and prograde melting in the continental crust. Jour. Metamorp. Geol., v.27, pp.295–315.CrossRefGoogle Scholar
  5. Bhowmik, S.K. and Dasgupta, S. (2012) Tectonothermal evolution of the Banded Gneissic Complex in central Rajasthan, NW India: Present status and correlation, Jour. Asian Earth Sci., doi:10.1016/j.jseaes.2011.07.025 Google Scholar
  6. Biju-Sekhar, S., Yokoyama, K., Pandit, M.K., Okudaira, T., Yoshida, M. and Santosh, M. (2003) Late Palaeoproterozoic magmatism in the Delhi Fold Belt, NW India and its implication: evidence from EPMA chemical ages of zircons. Jour. Asian Earth Sci., v.22, pp.189–207.CrossRefGoogle Scholar
  7. Buick, I.S., Allen, C., Pandit, M., Rubatto, D. and Hermann, J. (2006) The Proterozoic magmatic and metamorphic history of the Banded Gneiss Complex, Central Raj, India: LA-ICPMS U-Pb zircon constraints. Precambrian Res., v.151, pp.119–142.CrossRefGoogle Scholar
  8. Buick, I.S., Clark, C., Rubatto, D AND Hermann, J., Pandit, M. and Hand, M. 2010. Constraints on the Proterozoic evolution of the Aravalli–Delhi Orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry. Lithos, v.120, pp.511–528.CrossRefGoogle Scholar
  9. Choudhary, A.K., Gopalan, K. and Sastry, C.A. (1984) Present status of the geochronology of the Precambrian rocks of Raj. Tectonophysics, v.105, pp.131–140.CrossRefGoogle Scholar
  10. Condie, K.C. (1982) Plate Tectonics and Crustal Evolution. 2nd Edn. Pergaman Press, New York, 301p.Google Scholar
  11. Condie, K.C. (1997) Plate Tectonics and Crustal Evolution, Butterworth-Heinemann, Oxford, 282p.Google Scholar
  12. Des Marais, D. (2001) Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. In: J.W. Valley and D.R. Cole (Eds.), Stable Isotope Geochemistry. Review Mineralia Geochem., v.43, pp.555–578.CrossRefGoogle Scholar
  13. Eriksson, K.A. (1982a) Sedimentation patterns in the Barberton mountain land, south Africa and the Pilbara Block, Australia: Evidence for Archaean rifted continental margins. Tectonophysics, v.81, pp.179–193.CrossRefGoogle Scholar
  14. Eriksson, K.A. (1982b) Archaean and early Proterozoic sedimentation styles in the Kaapvaal Province, South Africa and Pilbara Block, Australia, Rev. Brasica Geosci., v.12, pp.121–131.Google Scholar
  15. Eigenbrode, J.L. and Freeman, K.H. (2006) Neoarchaean rise of aerobic microbial ecosystems. Proc. National Acad. Sci. USA, No.103, pp.15759–15764.CrossRefGoogle Scholar
  16. Fedo, C.M., Young, G.M., Nesbitt, H.W. and Hanchar, J.M. (1997) Potassic and sodic metasomatism in the southern province of the Canadian shield: Evidence from the Palaeoproterozoic Serpent Formation, Huronian Supergroup, Canada. Precambrian Res., v.84, pp.17–36CrossRefGoogle Scholar
  17. Fischer, W.W., Schroeder, S., Lacassie, J.P., Beukes, N.J., Goldberg, T., Strauss, H., Horstmann, U.E., Schrag, D.P. and Knoll, A.H. (2009) Isotopic constraints on the Neoarchaean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapval craton, South Africa. Precambrian Res., v.169, pp.15–27.CrossRefGoogle Scholar
  18. Friend, C.R.L., Nutman, A.P., Bennet, V.C. and Norman, M.D. (2008) Seawater-like trace element signatures (REE+Y) of Eoarchaean chemical sedimentary rocks from southern west Greenland, and their corruption during high-grade metamorphism. Contrib. Mineral. Petrol., v.155, pp.229–246CrossRefGoogle Scholar
  19. Ghosh, S.K. and Naha, K. (1962) Recumbent folding in migmatites in the Archaean basement Rajasthan, India. Amer. Jour. Sci., v.260, pp.241–248.CrossRefGoogle Scholar
  20. Goldschmidt, V.M. (1954) Geochemistry, Oxford.Google Scholar
  21. Gopalan, K., Macdougall, J.D., Roy, A.B. and Murali, A.V. (1990) Sm-Nd evidence for 3.3 Ga old rocks in Rajasthan NW India. Precambrian Res., v.48, pp.287–297.CrossRefGoogle Scholar
  22. Graf, D.L. (1960) Geochemistry of sedimentary carbonates: In: Illinois State Geological Survey Circular, 301p.Google Scholar
  23. Guha, D.B. and Bhattacharya, A.K. (1995) Metamorphic evolution and high grade reworking of the Sandmata Complex granulites. In: K.R. Gupta and S. Sinha-Roy (Eds.), Continental crust of northwestern and central India. Mem. Geol. Soc. India, No.31, pp.163–198.Google Scholar
  24. Gupta, S.N., Arora, Y.K., Mathur, R.K., Iqballudin, Prasad, B., Sahai, T.N. and Sharma, S.B. (1981) Lithostratigraphic map of Aravalli region, South-eastern Rajasthan and northern Gujarat. Geol. Surv. India, Hyderabad.Google Scholar
  25. Gupta, S.N., Arora, Y.K., Mathur, R.K., Iqballudin, Prasad, B., Sahai, T.N. and Sharma, S.B. (1997) The Precambrian Geology of the Aravalli region, Southeastern Rajasthan and northwestern Gujarat. Mem. Geol. Surv. India, 123p.Google Scholar
  26. Hayes, J.M. (1994) Global methanotropy at the Archaean- Proterozoic transition. In: S. Bergston (Ed.), Early Life on Earth, Columbia Univ. Press, New York, 84, pp.200–236.Google Scholar
  27. Heron, A.M. (1953) The Geology of Central Rajputana. Mem. Geol. Surv. India, v.79, pp.1–389.Google Scholar
  28. Hinrichs, K.U. (2002) Microbial Fixation of methane carbon at 2.7 Ga: Was an anaerobic mechanism possible? Geochem. Geophys., Geosystems 3, 20001GC00026.Google Scholar
  29. Holser, W.T. (1977) Evaluation of the application of rare-earth elements to Paleooceanography. Paleogeo. Paleoclimat. Palaeco., v.132, pp.309–324.CrossRefGoogle Scholar
  30. Kaufman, A.J. (1996) Geochemical and mineralogic effects of contact metamorphism on Banded iron formation: an examplefrom the Transvaal basin South Africa. Precambrian Res., v.79, pp.171–194.CrossRefGoogle Scholar
  31. Kroner, A. (1984) Evolution, growth and stabilization of the Precambrian lithosphere. Physics and Chemistry of Earth, 15.Google Scholar
  32. Lowe, D.R. (1982) Comparative sedimentology of the principal volcanic sequences of Archaean green-stone belts in South Africa,Western Austarlia and Canada: Implications for crustal evolution. Precambrian Res., v.17, pp.1–29.CrossRefGoogle Scholar
  33. Maheshwari, A., Sial, A.N., Chittora, V.K. (1999) High d13C Palaeoproterozoic carbonates from the Aravalli Supergroup, Western India. Intermat. Geol. Rev., v.41, pp.949–955.Google Scholar
  34. Mccollom, T.M. (2003) Formation of meteorite hydrocarbons from thermal decomposition of siderite. Geochim. Cosmochim. Acta, v.67(2), pp.311–317.CrossRefGoogle Scholar
  35. Mclennan, S.M. (1981) Trace element geochemistry of sedimentary rocks; Implications for the composition and evolution of continental crust. Ph.D. thesis, the Australian national University, Canberra.Google Scholar
  36. Mclennan, S.M. and Taylor, S.R. (1984) Archaean sedimentary rocks and their relation to the composition of the Archaean continental crust. In: A. Kroner, G.N. Hanson, and A.M. Goodwin (Eds.) Archaean Geochemistry-The origin and evolution of the Archaean continental crust. Springer, Germany.Google Scholar
  37. Mclennan, S.M., Taylor, S.R. and Eriksson, K.A. (1983a) Geochemistry of Archaean shales from the Pilbara Supergroup, Western Austarlia. G. C. A., v.47, pp.1211–1222.Google Scholar
  38. Mclennan, S.M., Taylor, S.R. and Kroner, A. (1983b) Geochemical evolution of Archaean shales from South Africa 1: Swaziland and Pongola Supergorups. Precambrian Res., v.22, pp.93–124.CrossRefGoogle Scholar
  39. Mclennan, S.M., Taylor, S.R. and Mcgregor, V.G. (1984) Geochemistry of Archaean sedimentary rocks from West Greenland. Geochim. Cosmochim. Acta., v.48, pp.1–13.CrossRefGoogle Scholar
  40. Naha, K. and Halyburton, R.V. (1974a) Early Precambrian stratigraphy of central and southern Rajasthan, India. Precambrian Res., v.1, pp.55–73.CrossRefGoogle Scholar
  41. Naha, K. and Halyburton, R.V. (1974b) Late stress systems deduced from conjugate folds and kink bands in the “Main Raialo Syncline”, Udaipur District, Rajasthan, India. Bull. Geol. Soc. Amer., v.85, pp.251–256.CrossRefGoogle Scholar
  42. Naha, K. and Majumdar, A. (1971) Reinterpretation of the Aravalli basal conglomerate at Morchana, Udaipur district, Rajasthan, western India. Geol. Mag., v.108, pp.111–114.CrossRefGoogle Scholar
  43. Naha, K. and Roy, A.B. (1983) The problem of Precambrian basement in Rajasthan, Western India. Precambrian Res., v.19, pp.217–234.CrossRefGoogle Scholar
  44. Nance, W.B. and Taylor, S.R. (1977) REE patterns and crustal evolution II: Archaean sedimentary rocks from Kalgoorlie, Aust. Geochim. Cosmochim. Acta, v.41, pp.225–231.CrossRefGoogle Scholar
  45. Ono, S., Bukes, N.J., Rumble, D. and Fogel, M. L. (2006) Early evolution of atmospheric oxygen from multiple sulphur and carbon isotope records of 2.9 Ga Mozaan Group of Pongolo Supergroup, S. Africa. S. African J. of Geol 97-108Google Scholar
  46. Peucat, J.J., Mahabaleshwar, B., and Jaynanda, M. (1993) Age ofyounger tonalitic magmatism and granulite metamorphism in the south Indian transition zone (Krishnagiri area); comparison with older Peninsular gneisses from Hassan-Gorour area. Jour. Metamorp. Geol., v.11, pp.879–888CrossRefGoogle Scholar
  47. Rao, C.V.D, Santosh M, Purohit, R, Junpengwang, Xingfu Jiang, and Kusky, T. (2011) LA-ICP-MS U-Pb zircon constraints on the Mesoproterozoic and Neoarchaean history of the Sandmata Complex in Raj. within the NW Indian Plate. Jour. Asian Earth Sci., v.42(3), pp.286–305.CrossRefGoogle Scholar
  48. Roscoe, S.M., Therault, R.J. and Prasad, N. (1992) Circa 1.7 Ga Rb-Sr resetting in two Hurronian palaeosols, Elliot Lake, Ontario and Vile Marie, Quebec. Geol. Surv. Canada, v.92(2), pp.119–124Google Scholar
  49. Ramakrishnan, M. and Vaidyanathan, R. (2008) Geology of India, Geological Society of India, Bangalore, v.1, pp.261–333.Google Scholar
  50. Roy, A. B., Kröner, A., Bhattacharya, P.K. and Rathore S. (2005a) Metamorphic evolution and zircon geochronology of early Proterozoic granulites in the Aravalli Mountains of northwestern India. Geol. Mag., v.142(3), pp.287–302.CrossRefGoogle Scholar
  51. Roy, A.B., Kumar, S., Laul, V. and Chauhan, N.K. (2005b) Tectonostratigraphy of the Lead-zinc bearing Metasedimentary Rocks of the Rampura-Agucha Mine and its neighbourhood, District Bhilwara, Rajasthan: Implications on metallogeny. In: M. Deb, W. Goodfellow (Eds.), Sediment Hosted Pb-Zn deposit. Narosa Publ., pp.273–289.Google Scholar
  52. Roy, A.B., Sharma, B.L., Paliwal, B.S., Chauhan, N.K., Nagori, D.K., Golani, P.R., Bejarniya, B.R., Bhu, H and AliSabah, M. (1993) Lithostratigraphy and tectonic evolution of the Aravalli Supergroup: A Protogeosynclinal sequence. In: S.M. Casshyap (Ed.), Rift Basins and aulacogens Gyanodaya Prakshan, Nainital, pp.73–90.Google Scholar
  53. Roy, A.B and Kröner, A., 1996. Single zircon evaporation ages constraining the growth of the Archaean Aravalli craton, Northwestern Indian shield. Geological Magazine, 133(3), 333–342.CrossRefGoogle Scholar
  54. Roy, A.B. and Jakhar, S.R. (2002) Geology of Rajasthan (Northwest India) Precambrian to recent. Scientifc Publishers (India), Jodhpur.Google Scholar
  55. Roy, A.B., Kroner, A., Rathore, S., Laul, V. and Purohit, R. (2012) Tectono-metamorphic studies and zircon ages of the Sandmata Complex, Rajasthan, NW India: implications for the exhumation of Proterozoic granulites in an Archaean granite-gneiss terrane. Jour. Geol. Soc. India, v.79, pp.323–334.CrossRefGoogle Scholar
  56. Roy, A.B., Paliwal, B.S., Shekhawat, S.S., Nagori, D.K., Golani, P.R. and Bejarniya, B.R. (1988) Stratigraphy of the Aravalli Supergroup in the type area. In: A.B Roy (ed), Precambrian of the Aravalli Mountain, Raj, India. Memoir Geological Society India, 7, 121–131.Google Scholar
  57. Saha, L., Bhowmik, S.K., Fukuoka, M. and Dasgupta, S. (2008) Contrasting Episodes of regional granuilte-facies metamorphism in enclaves and host gneisses from the Aravalli- Delhi Mobile Belt, NW India. Jour. Petrol., v.49, pp.107–128.CrossRefGoogle Scholar
  58. Sarkar, G., Ray Barman, T. and Corfu, F. (1989) Timing of continental arc magmatism in north wets India. Evidence fromU-Pb zircon geochronology. Jour. Geol., v.97, pp.607–612.Google Scholar
  59. Sharma, R.S. (1988) Evolution of Precambrian lithosphere: western India. In: A.B Roy (Ed.), Precambrian of the Aravalli Mountain, Raj, India. Mem. Geol. Soc. India, No.7, pp.138–148.Google Scholar
  60. Shields, G. and Veizer, J. (2002) Precambrian marine carbonate database;Version 1.1 Geochemistry Geophysics Geosystems, 2001GC00266.Google Scholar
  61. Sreenivas, B. Das, Sharma, S., Patil, D.J., Roy, A.B. Sreenivasan, R. (2001) Positive 13C excursion in carbonate and organic fractions from the Palaeoproterozoic Aravalli Supergroup, Northwestern India. Precambrian Res., v.106, pp.277–290.CrossRefGoogle Scholar
  62. Strauss, H. and Moore, T.B. (1992) Abundances and isotopic compositions of carbon and sulphur species in whole rock and kerogen samples. In: J.W. Schopf and C. Klein (Eds.), The Proterozoic Biosphere: A multidisciplinary study. Cambridge University Press. Cambridge, pp.709–798.CrossRefGoogle Scholar
  63. Taylor, S.R. and Maclennan, S.M. (1985) The continental crust: Its composition and evolution. Blackwell Scientific Publications 1-312Google Scholar
  64. Tobisch, O.T., Collerson, K.D., Bhattacharya, T. and Mukhopadhyay, D. (1994) Structural relationship and Sr- Nd isotope systematics of polymetamorphic granite gneisses and granitic rocks from central Rajasthan, India — Implications for the evolution of Aravalli craton, Precambrian Res., v.65, pp.319–339Google Scholar
  65. Turekian, K.K. and Wedepohl, K.H. (1961) Distribution of theelements in some major units of earth’s crust. Geol. Soc. Amer. Bull., v.72, pp.175–192.CrossRefGoogle Scholar
  66. Valley, J.W. (1986) Stable isotope geochemistry of metamorphic rocks. In: J.W. Valley, H.P. Taylor and J.R. O’Neil (Eds.), Stable isotopes in high temperature geological processes. Reviews in Mineralogy, Mineral. Soc. Amer., Washington D.C., v.16, pp.445–489.Google Scholar
  67. Veizer, J, Hoefs, J., Ridler, R.H., Jensen, L.S. and Lowe, D.R. (1989a) Geochemistry of Precambrian carbonates: I. Archaean hydrothermal systems. Geochim. Cosmochim. Acta, v.53, pp.845–857.CrossRefGoogle Scholar
  68. Veizer, J, Hoefs, J., Lowe, D.R. and Thurston, P.C., (1989b) Geochemistry of Precambrian carbonates: II. Archaean greenstone belts and Archaean sea water. Geochim. Cosmochim. Acta, v.54, pp.1045–1057.Google Scholar
  69. Veizer, J. and Jansen, S.L. (1979) Basement and sedimentary recycling and continent evolution. Jour. Geol., v.87, pp.341–370CrossRefGoogle Scholar
  70. Walderbauer, J.R., Sherman, L.S., Sumner, D.Y. and Summons, R.E. (2009) Late Archaean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res., v.169, pp.28–47CrossRefGoogle Scholar
  71. Weidenbeck, M., Goswami, J.N. and Roy, A.B. (1996a) An ion microprobe study of single zircons from the Amet granite, Rajasthan. Jour. Geol. Soc. India, v.48, pp.127–137.Google Scholar
  72. Wiedenbeck, M., Goswami, J.N. and Roy, A.B. (1996b) Stabilization of the Aravalli craton of the northwestern India at 2.5 Ga.: An ion-microprobe zircon study. Chem. Geol., v.129, pp.325–340.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2015

Authors and Affiliations

  • Ritesh Purohit
    • 1
  • Dominic Papineau
    • 2
  • Prakshal Mehta
    • 3
  • Marilyn Fogel
    • 4
  • C.V. Dharma Rao
    • 5
  1. 1.Department of GeologyGovernment College SirohiRajasthanIndia
  2. 2.Deptt. of Earth and Env. SciencesBoston CollegeChestnut HillUSA
  3. 3.Sirohi, RajasthanIndia
  4. 4.Department of Earth and Environmental SciencesUniversity of CaliforniaMercedUSA
  5. 5.National Disaster Management AuthorityNew DelhiIndia

Personalised recommendations