Advertisement

Journal of the Geological Society of India

, Volume 84, Issue 2, pp 163–173 | Cite as

Preliminary magnetic susceptibility characteristics of the Bharati promontory (Grovness Peninsula), Larsemann Hills, Prydz Bay region, East Antarctica

  • Manoj K. PanditEmail author
  • Helga de Wall
Research Articles
  • 84 Downloads

Abstract

The coastal tract of the Prydz Bay region in the East Antarctica exposes Archean to Late Proterozoic magmatic and medium- to high grade (amphibolite — granulite facies) metamorphic rocks. The para- and ortho gneisses from the Bharati promontory (Grovness Peninsula) forming a part of the Larsemann Hills in the southern segment of Prydz Bay were investigated for magnetic characterization. In this small peninsula the upper amphibolite facies gneisses occur as NE-trending bands. The para-gneisses show a range of mineral assemblages (± cordierite ± sillimanite ±garnet) while ortho-gneiss mineralogy includes quartz, feldspar, biotite, garnet. All the lithological units in Bharati promontory contain ubiquitous magnetite, however, with wide variation in the volume proportions. This has resulted in a wide range in magnetic susceptibility (10−4 to 10−2 SI). Magnetic foliations show a correspondence with the general trend of lithounits (050° NE) and define a resulting geometry of mainly D1 and D2 foliations. The magnetic lineations show a preferred orientation with moderate easterly plunge (mean vector 093/36). The findings have implications for the magnetic field survey because such fabrics would impart a strong horizontal component of induced magnetization.

Keywords

Gneisses Magnetic susceptibility Bharati promontory Larsemann Hills East Antarctica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AADC (2007) Geology of Larsemann Hills, Australian Antarctic Data Center Map No. 133–9.Google Scholar
  2. Abrahamson, N. (1992) On farsideness of paleomagnetic poles: Magnetic refraction, sediment compaction and dipole off-set. Stud. Geophys. Geodaet., v.36, pp.26–41.CrossRefGoogle Scholar
  3. ADMAP (2006) A Digital Magnetic Anomaly Map of the Antarctic. Antarctica, Theme 3, 109-116, DOI:  10.1007/3-540-32934-X12.Google Scholar
  4. Aranguren, A., Cuevas, J. and Tubia, J.M. (1996) Composite magnetic fabrics from S-C mylonites. Jour. Struct. Geol., v.18, pp.63–869.CrossRefGoogle Scholar
  5. Borradaile, G. J. and Henry, B. (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci. Rev., v.42, pp.49–93.CrossRefGoogle Scholar
  6. Black, L.P., Harley, S.L., Sun, S.S. and Mcculloch, M.T. (1987) The Rayner complex of East Antarctica: complex isotopic systemic within a Proterozoic mobile belt. Jour. Met. Geol., v.5, pp.1–26.CrossRefGoogle Scholar
  7. Caòon-Tapia, E. (1996) Single-grain versus distribution anisotropy: a simple three-dimensional model. Phy. Earth Planet. Interior, v.94, pp.149–158.CrossRefGoogle Scholar
  8. Carson, C.J., Dirks, P.G.H.M., Hand, M., Sims, J. and Wilson, C. J.L. (1995) Compressional and extensional tectonics in lowmedium pressure granulites from the Larsemann Hills, East Antarctica. Geol. Mag., v.132, pp.151–170.CrossRefGoogle Scholar
  9. Carson, C.J., Fanning, C.M. and Wilson, C.J.L. (1996) Timing of the Progress Granite, Larsemann Hills: evidence for Early Palaeozoic orogenesis within the east Antarctic Shield and implications for Gondwana assembly. Australian Jour. Earth Sci., v.43, pp.539–553.CrossRefGoogle Scholar
  10. Carson, C.J., Powell, R., Wilson, C.J.L. and Dirks, P.H.G.M. (1997) Partial melting during tectonic exhumation of a granulite terrane: an example from the Larsemann Hills, East Antarctica. Jour. Met. Geol., v.15, pp.105–126.CrossRefGoogle Scholar
  11. de Wall, H. and Greiling, R. O. (2000) Remagnetisation and magnetic refraction in Proterozoic dykes from central Scandinavia during Caledonian deformation. Phy. Chem. Earth, v.A25/5, pp.519–524.CrossRefGoogle Scholar
  12. de Wall, H., Pandit, M.K., Dotzler, R. and Just, J. (2012) Cryogenian transpression and granite intrusion along the western margin of Rodinia (Mt. Abu region): Magnetic fabric and geochemical inferences on Neoproterozoic geodynamics of the NW Indian block. Tectonophysics, v.554–557, pp.143–158.CrossRefGoogle Scholar
  13. Dirks, P.H.G.M. and Hand, M. (1995) Clarifying temperaturepressure paths via structures in granulite from the Bolingen Islands, Antarctica. Australian Jour. Earth Sci., v.42, pp.157–172.CrossRefGoogle Scholar
  14. Dirks, P.H.G.M., Carson, C.J. and Wilson, C.J.L. (1993) The deformation history of the Larsemenn Hills, Prydz Bay: the importance of the Pan-African (500 Ma) in East Antarctica. Antarctic Sci., v.5, pp.179–192.CrossRefGoogle Scholar
  15. Dirks, P.H.G.M. and Wilson, C.J.L. (1995) Crustal evolution of the East Antarctic mobile belt in Prydz Bay: continental collision at 500 Ma? Precambrian Res., v.75, pp.189–207.CrossRefGoogle Scholar
  16. Flinn, D. (1962) On folding during three-dimensional progressive deformation. Quart. Jour. Geol. Soc., v.118, pp.385–428.CrossRefGoogle Scholar
  17. Fitzsimons, I.C.W. (1997) The Brattstrand paragneiss and the SØstrene orthogneiss: A review of Pan-African metamorphism and Grenvillian relics in southern Prydz Bay. In: C.A. Ricci (Ed.), The Antarctic Region: Geological Evolution and Processes, Terra Antarctica Publication, pp.121–130.Google Scholar
  18. Fitzsimons, I.C.W. and Harley, S.L. (1991) Geological relationships in high-grade gneiss of the Brattstrand Bluffs coastline, Prydz Bay, east Antarctica. Australian Jour. Earth Sci., v.38, pp.497–519.CrossRefGoogle Scholar
  19. Fitzsimons, I.C.W. and Harley, S.L. (1992) Mineral reaction texture in high-grade gneisses: evidence for contrasting pressure-temperature paths in the Proterozoic Complex of East Antarctica. In: Y. Yoshida, K. Kaminuma and K. Shiraishi (Eds.), Recent Progress in Antarctic Earth Science, Terra Scientific Publishing, Tokyo, pp.103–111.Google Scholar
  20. Fitzsimons, I.C.W., Kinny, P.D. and Harley, S.L. (1997) Two stages of Zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity of Pan-African metamorphism in the Prydz Bay, East Antarctica. Terra Nova, v.9, pp.47–51.CrossRefGoogle Scholar
  21. Gaillot, P., de Saint-Blanquat, M. and Bouchez, J.L. (2006) Effects of magnetic interactions in anisotropy of magnetic susceptibility: Models, experiments and implications for igneous rock fabrics quantification. Tectonophysics, v.418, pp.3–19.CrossRefGoogle Scholar
  22. Golynsky, A. V., Alyavdin, S. V., Masolov, V. N., Tscherinov, A. S. and Volnukhin, V. S. (2002) The composite magnetic anomaly map of the East Antarctic. Tectonophysics, v.347, pp.109–120.CrossRefGoogle Scholar
  23. Hargraves, R.B., Johnson, D. and Chan, C. Y. (1991) Distribution anisotropy: the cause of AMS in igneous rocks? Geophys. Res. Lett., v.18, pp.2193–2196.CrossRefGoogle Scholar
  24. Harley, S. L. (1988) Proterozoic granulites from the Rauer Group, East Antarctica. I. Decompressional pressure- temperature paths deduced from mafic and felsic gneisses. Jour. Petrol., v.29, pp.1059–1095.CrossRefGoogle Scholar
  25. Harley, S.L. and Fitzsimons, I.C.W. (1995) High-grade metamorphism and deformation in the Prydz Bay Region, East Antarctica: terranes, events and relational correlations. India andAntarctica during the Precambrian. Mem. Geol. Soc. India, v.343, pp.73–100.Google Scholar
  26. Hensen, B.J. and Zhou, B. (1995) A Pan African granulite facies metamorphic episode in Prydz Bay, Antarctica: evidence from Sm-Nd garnet dating. Australian Jour. Earth Sci., v.42, pp.249–258.CrossRefGoogle Scholar
  27. Hensen, B.J. and Zhou, B. (1997) East Gondwana amalgamation by Pan-African collision? Evidence in the Prydz Bay region, East Antarctica. In: C.A. Ricci (Ed.), The Antarctic Region: Geological Evolution and Processes, Terra Antarctica Publ., pp.115–119.Google Scholar
  28. Hrouda, F. (1994) A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophy. Jour. Intl., v.118, pp.604–612.CrossRefGoogle Scholar
  29. Hrouda, F. and Janák, F. (1976) The changes in shape of the magnetic susceptibility ellipsoid during progressive metamorphism and deformation. Tectonophysics, v.34, pp.135–148.CrossRefGoogle Scholar
  30. Hunt, C.P., Moskowitz, B.M. and Banerjee, S.K. (1995) Magnetic Properities of Rocks and Minerals: Rock Physics and Phase Relations.A Handbook of Physical Constants, AGU Reference Shelf 3, pp.189–204.CrossRefGoogle Scholar
  31. Jelinek, V. (1981) Characterization of the magnetic fabrics of rocks. Tectonophysics, v.79, pp.63–67.CrossRefGoogle Scholar
  32. Kelsey, D.E., White, R.W., Powell, R., Wilson, C.J.L. and Quinn, D. (2003) New constraints on metamorphism in the Rauer Group, Prydz Bay, East Antarctica. Jour. Met. Geol., v.21, pp.739–759.CrossRefGoogle Scholar
  33. Kinny, P.D., Black, L.P. and Sheraton, J.W. (1993) Zircon ages and the distribution of Archean and Proterozoic rocks in the Rauer Islands. Antarctic Sci., v.5, pp.193–206.CrossRefGoogle Scholar
  34. Koppelt, U., Abrahamsen, N. and Voss, O. (1998) Magnetic modelling of strongly magnetized bodies. Phys. Chem. Earth, v.23, pp.1009–1014.CrossRefGoogle Scholar
  35. Kontny, A. and Dewall, H. (2000) The use of low and high k(T)- curves for the characterization of magneto-mineralogical changes during metamorphism. Phy. Chem. Earth, v.A25/5, pp.421–429.CrossRefGoogle Scholar
  36. Mamtani, M.A., Chadima, M., de Wall, H. and Greiling, R.O. (2012) Rocks, fabrics and magnetic anisotropy: An introduction to the issue in honour of František Hrouda. Internat. Jour. Earth Sci., v.101, pp.605–607.CrossRefGoogle Scholar
  37. Raposo, M.I.B., ďAgrella-Filho, M.S. and Siqueira, R. (2003) The effect of magnetic anisotropy on paleomagnetic directions in high-grade metamorphic rocks from the Juiz de Fora Complex, SE Brazil. Earth Planet. Sci. Lett., v.209, pp.131–147.CrossRefGoogle Scholar
  38. Reddy, C.D. and Dhar, A. (2008) Magnetic anomaly map for Bharati promontory, Larsemann Hills, East Antarctica. Curr. Sci., v.94, pp.715–717.Google Scholar
  39. Rochette, P., Jackson, M. and Aubourg, C. (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev. Geophys., v.30, pp.209–226.CrossRefGoogle Scholar
  40. Sen, K., Dubey, A.K., Tripathi, K. and Pfänder, J.A. (2012) Composite mesoscopic and magnetic fabrics of the Paleoproterozoic Wangtu Gneissic Complex, Himachal Himalaya, India: Implications for ductile deformation and superposed folding of the Himalayan basement rocks. Jour. Geodyn., v.61, pp.81–93.CrossRefGoogle Scholar
  41. Sheraton, J.W. and Collerson, K.D. (1983) Archaean and Proterozoic geological relationships in the Vestfold Hills- Prydz Bay area, Antarctica. BMR Jour. Australian Geol. Geophys., v.8, pp.119–128.Google Scholar
  42. Sheraton, J.W., Black, L.P. and Mcculloch, M.T. (1984) Regional geochemical and isotopic characteristic of high-grade metamorphics of the Prydz Bay area: the extent of Proterozoic reworking of Archean continental crust in East Antarctica. Precambrian Res., v.26, pp.169–198.CrossRefGoogle Scholar
  43. Shrivastava, P. K., Asthana, R., Beg, M. J. and Ravindra, R. (2011) Characters of lake water of Bharati Promontory, Larsemann Hills, East Antarctica. Jour. Geol. Soc. India, v.78, pp.217–225.CrossRefGoogle Scholar
  44. Stephenson, A. (1994) Distribution anisotropy: two simple models for magnetic lineation and foliation. Phys. Earth Planet. Inter., v.82, pp.49–53.CrossRefGoogle Scholar
  45. Stüwe, K. and Powell, R. (1989) Low-pressure granulite facies metamorphism in the Larsemann Hills area, East Antarctica; Petrology and tectonic implications for the evolution of the Prydz Bay area. Jour. Met. Geol., v.7, pp.465–483.CrossRefGoogle Scholar
  46. Stüwe, K., Braun, H-M. and Peer, H. (1989) Geology and structure of the Larsemann Hills area, Prydz Bay, East Antarctica. Australian Jour. Earth Sci., v.36, pp.219–241.CrossRefGoogle Scholar
  47. Tarling, D.H. and Hrouda, F. (1993) The Magnetic Anisotropy of Rocks. Chapman and Hall, London, 217p.Google Scholar
  48. Tomezzoli, R.N., Mcdonald, W.D. and Tickyj, H. (2003) Composite magnetic fabrics and S-C structures in granite gneiss of Cerro de los Viejos, La Pampa province, Argentina. Jour. Struct. Geol., v.5, pp.351–368.Google Scholar
  49. Thost, D.E., Motoyoshi, B.J. and Hensen, B.J. (1992) Mode of occurrence, geochemistry and mineral textures of mafic to ultramafic rocks from the Bolingen Islands, Prydz Bay, East Antarctica. In: I. Yoshida, K. Kaminuma and K. Shiraishi (Eds.), Recent Progress in Antarctic Earth Science. Terra Scientific Publishing, Tokyo, pp.113–118.Google Scholar
  50. Thost, D.E., Hensen, B.J. and Motoyoshi, B.J. (1994) The geology of a rapidly uplifted medium to low pressure terrane of Pan-African age: the Bolingen Islands, Prydz Bay, eastern Antarctica. Petrology, v.2, pp. 293–316.Google Scholar
  51. Tingey, R.J. (1981) Geological investigations in Antarctica 1968–1969: The Prydz-Bay-Amery Ice Shelf — Prince Charles Mountains area: Bureau of Mineral Resources Australian Record, 34p.Google Scholar
  52. Tingey, R.J. (1991) The regional geology of Archaean and Proterozoic rocks in Antarctica. In: Tingey, R. J. (Ed.) The Geology of Antarctica, Oxford University Press, Oxford, pp.1–73Google Scholar
  53. Tong, L., Wilson, C.J.L. and Liu, X. (2002) A High-Grade Event of ~1100 Ma preserved within the ~500 Ma mobile belt of the Larsemann Hills, East Antarctica: further evidence from 40Ar-39Ar dating. Terra Antarctica, v.9, pp.73–86.Google Scholar
  54. Wang, Y., Liu, D., Chung, S-Lin., Tong, L. and Ren, L. (2008) Shrimp zircon age constraints from the Larsemann Hills region, Prydz Bay, for a Late Mesoproterozoic to Early Neoproterozoic tectonothermal event in East Antarctica. Amer. Jour. Sci., v.308, pp.573–617.CrossRefGoogle Scholar
  55. Yoshida, M. (1995) Assembly of East Gondwanaland during the Mesoproterozoic and its rejuvenation during the Pan-African period. In: M. Yoshida and M. Santosh (Eds.), India and Antarctica During the Precambrian, Mem. Geol. Soc. India, v.34, pp.22–45.Google Scholar
  56. Zhang, L., Tong, L., Liu, X. and Scharer, U. (1996) Conventional U-Pb age of the high-grade metamorphic rocks in the Larsemann Hills, East Antarctica. In: Z.H. Pang (Ed.), Advances in Solid Earth Sciences, Science Press, Beijing, pp.27–35.Google Scholar
  57. Zhao, Y., Song, B., Wang, Y., Ren, L., Li, J. and Chen, T. (1992) Geochronology of the late granite in the Larsemann Hills, East Antarctica. In: Y. Yoshida, K. Kaminuma, and K. Shiraishi (Eds.) Recent Progress in Antarctic Earth Science, Terra Scientific Publishing, Tokyo, pp.153–169.Google Scholar
  58. Zhao, Y., Liu, X., Song, B., Zhan, Z., Li, J., Yao, Y. and Wang, Y. (1995) Constraints on stratigraphic age of metasedimentary rocks of the Larsemann Hills, East Antarctica: possible implication for Neoproterozoic tectonics. Precambrian Res., v.75, pp.175–188.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2014

Authors and Affiliations

  1. 1.Department of GeologyUniversity of RajasthanJaipurIndia
  2. 2.Geozentrum NordbayernUniversitat Erlangen-NürnbergErlangenGermany

Personalised recommendations