Advertisement

Journal of the Geological Society of India

, Volume 79, Issue 2, pp 199–209 | Cite as

Geothermal modeling for the base of gas hydrate stability zone and saturation of gas hydrate in the Krishna-Godavari basin, eastern Indian margin

  • Uma ShankarEmail author
  • Kalachand Sain
  • Michael Riedel
Article

Abstract

The passive eastern Indian margin is rich in gas hydrates, as inferred from the wide-spread occurrences of bottom-simulating reflectors (BSRs) and recovery of gas hydrate samples from various sites in the Krishna Godavari (KG) and Mahanadi (MN) basins drilled by the Expedition 01 of the Indian National Gas Hydrate Program (NGHP). The BSRs are often interpreted to mark the thermally controlled base of gas hydrate stability zone (BGHSZ). Most of the BSRs exhibit moderate to typically higher amplitudes than those from other seismic reflectors. We estimate the average geothermal gradient of ∼40°C/km and heat flow varying from 23 to 62 mW/m2 in the study area utilizing the BSR’s observed on seismic sections. Further we provide the BGHSZ where the BSR is not continuous or disturbed by local tectonics or hidden by sedimentation patterns parallel to the seafloor with a view to understand the nature of BSR.

Since, gas hydrate bearing sediment has higher electrical resistivities than that of the host sediment, we estimate two levels of gas hydrates saturations up to 25% in the depth interval between 70 to 82, and less than 20% in the depth interval between 90 to 104 meter below the seafloor using the resistivity log data at site 15 of NGHP-01.

Keywords

Gas hydrates Bottom simulating reflectors Geothermal gradient Resistivity log Saturation KG basin Eastern Indian margin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreassen, K. (1995) Seismic studies of a bottom simulating reflection related to gas hydrate beneath the continental margin of the Beaufort Sea. Jour. Geophys. Res., v.100(B7), pp.12659–12673.CrossRefGoogle Scholar
  2. Archie, G.E. (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans.Amer. Instt. Min. Metall. Engg., v.146, pp.54–62.Google Scholar
  3. Bastia, R. (2006) An overview of Indian sedimentary basins with special focus on emerging east coast deepwater frontiers. The Leading Edge, v.25(7), pp.818–829.CrossRefGoogle Scholar
  4. Biksham, G. and Subrahmanyam, V. (1988) Sediment transport of the Godavari River Basin and its controlling factors. Jour. Hydrology, v.101, pp.275–90.CrossRefGoogle Scholar
  5. Bouriak, S., Vanneste, M. and Saoutkine, A. (2000) Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the Voring Plateau, offshore Norway, Marine Geology v.163, pp.125–148.CrossRefGoogle Scholar
  6. Brown, K.M., Bangs, N.L., Froelich, P.N. and Kvenvolden, K.A. (1996) The nature, distribution and origin of gas hydrate in the Chile Triple region. Earth Planet Sci. Lett., v.139, pp.471–483.CrossRefGoogle Scholar
  7. Claypool, G.E. and Kvenvolden, K.A. (1983) Methane and other hydrocarbon gases in marine sediment. Annual Rev. Earth Planet. Sci., v.11, pp.299–327.CrossRefGoogle Scholar
  8. Cooper, A.K. and Hart, P.E. (2003) High-resolution seismicreflection investigation of the northern Gulf of Mexico gas hydrate stability zone. Marine Petrol. Geol., v.19, pp.1275–1293.CrossRefGoogle Scholar
  9. Collett, T.S. (2001) A review of well-log analysis techniques used to assess gas-hydrate-bearing reservoirs. In: C.K. Paull and W.P. Dillon (Eds.), Natural Gas Hydrates: Occurrence, Distribution, and Detection, Geophysical Monographs, v.124, pp.189–210.Google Scholar
  10. Collett, T.S. (2002) Energy Resource Potential of Natural Gas Hydrates. Amer. Assoc. Petrol. Geol. Bull., v.86(11), pp.1971–1992.Google Scholar
  11. Collett, T.S., Riedel, M., Cochran, J.R., Boswell, R., Presley, J., Kumar, P., Sathe, A.V., Sethi, A., Lall, M., Sibal, V. and NGHP Expedition 01 Scientists (2008) National Gas Hydrate Program Expedition 01 initial reports, Directorate General of Hydrocarbons, New Delhi.Google Scholar
  12. Curray, J.R., Emmel, F.J., Moore, D.G. and Raitt, R.W. (1982) Structure, tectonics and geological history of the Northeastern Indian Ocean. In: A.E. Nairn and F.G. Stehli (Eds.), The ocean basins and margins, v.6, Plenum, New York, pp.399–450.Google Scholar
  13. Curray, J.R. (1991) Possible greenschist metamorphism at the base of a 22-km sedimentary section, Bay of Bengal. Geol., v.19, pp.1097–1100.Google Scholar
  14. Davis, E.E., Hyndman, R.D. and Villinger, H. (1990) Rates of fluid expulsion across the northern Cascadia accretionary prism: constraints from new heat flow and multichannel seismic reflection data. Jour. Geophys. Res., v.95, pp.8869–8889.CrossRefGoogle Scholar
  15. Dickens, G.R. and Quinby-hunt, M.S. (1994) Methane hydrate stability in seawater. Geophys. Res. Lett., v.21(19), pp.2115–2118.CrossRefGoogle Scholar
  16. Federov, L.V., Ravich, M.G. and Hofmann, J. (1982) Geologic comparison of southeastern peninsular India and Sri Lanka with a part of Antarctica. In: C. Craddock (Ed.), Antarctic Geology and Geophysics. University of Wisconsin Press, Madison, Wisconsin, USA, pp.157–171Google Scholar
  17. Fichler, C., Henriksen, S., Rueslaatten, H. and Hovland, M. (2005) North Sea Quaternary morphology from seismic and magnetic data: indications for gas hydrates during glaciations. Petroleum Geoscience, v.11, pp.331–337.CrossRefGoogle Scholar
  18. Fofonoff, N.P. (1985) Physical properties of seawater: a new salinity scale and equation of state for seawater. Jour. Geophys. Res., v.90(C2), pp.3332–3342.CrossRefGoogle Scholar
  19. Ganguly, N., Spence, G.D., Chapman, N.R. and Hyndman, R.D. (2000) Heat flow variations from bottom simulating reflectors on the Cascadia margin. Marine Geol., v.164, pp.53–68.CrossRefGoogle Scholar
  20. Ghosh, R., Sain, K. and Ojha, M. (2010A) Effective medium modeling of gas hydrate-filled fractures using sonic log in the Krishna-Godavari basin, eastern Indian offshore. Jour. Geophys. Res., v.115,B06101, pp.1–15.Google Scholar
  21. Ghosh, R., Sain, K. and Ojha, M. (2010B) Estimating the amount of gas hydrate using effective medium theory: a case study in the Blake Ridge. Marine Geophys. Res., Spec. Issue no.31, pp.29–37.Google Scholar
  22. Guerin, G., Goldberg, D. and Melsterl, A. (1999) Characterization of in situ elastic properties of gas hydratebearing sediments on the Blake Ridge. Jour. Geophys. Res., v.104, pp.17781–17796.CrossRefGoogle Scholar
  23. Gupta, S.K. (2006) Basin architecture and petroleum system of Krishna Godavari Basin, east coast of India, The Leading Edge, v.25(7), pp.830–837.CrossRefGoogle Scholar
  24. Helgerud, M.B., Dvorkin, J. and Nur, A. (1999) Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophys. Res. Lett., v.26, pp.2021–2024.CrossRefGoogle Scholar
  25. He, T., Spence, G.D., Riedel, M., Hyndman, R.D. and Chapman, N.R. (2007) Fluid flow and origin of a carbonate mound offshoreVancouver Island: Seismic and heat flow constraints. Marine Geol., v.239, pp.83–98.CrossRefGoogle Scholar
  26. Holbrook, W.S., Hoskins, H., Wood, W.T., Stephen, R.A., Lizarralde, D. and Leg 164 Science Party (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science, v.273, pp.1840–1843.CrossRefGoogle Scholar
  27. Horozal, S., Lee, G.H., Yi, B.Y., Yoo, D.G., Park, K.P., Lee, H.Y., Kim, W., Kim, H.J. and Lee, K. (2009) Seismic indicators of gas hydrate and associated gas in the Ulleung Basin, East Sea (Japan Sea) and implications of heat flows derived from depths of the bottom-simulating reflector. Marine Geol., v.258, pp.126–138.CrossRefGoogle Scholar
  28. Hovland, M., Gardner, J.V. and Judd, A.G. (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids, v.2, pp.127–136.CrossRefGoogle Scholar
  29. Hyndman, R.D. and Spence, G.D. (1992) A seismic study of methane hydrate marine bottom simulating reflectors. Jour. Geophys. Res., v.97(B5), pp.6683–6698.CrossRefGoogle Scholar
  30. Hyndman, R.D., Yuan, T. and Moran, K. (1999) The concentration of deep sea gas hydrates from downhole electrical resistivity logs and laboratory data. Earth Planet. Sci. Lett., v.172(1–2), pp.167–177.CrossRefGoogle Scholar
  31. Hyndman, R.D., Spence, G.D., Chapman, N.R., Riedel, M. and Edwards, R.N. (2001) Geophysical Studies of Marine Gas Hydrate in Northern Cascadia. In: C.K. Paull and W.P. Dillon (Eds.), Natural gas hydrates: occurrence, distribution, detection.Amer. Geophys. Union Monographs, v.124, pp.273–295.Google Scholar
  32. Kaul, N., Rosenberger, A. and Villinger, H. (2000) Comparison of measured and BSR derived heat flow values, Makran accretionary prism, Pakistan. Marine Geol., v.164, pp.37–51.Google Scholar
  33. Kleinberg, R.L., Flaum, C. and Collett, T.S. (2005) Magnetic resonance log of JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well: gas hydrate saturation, growth habit, relative permeability. In: S.R. Dallimore, and T.S. Collett (Eds.), Scientific Results from the Mallik 2000 Gas Hydrate Production Research Well Program. Geolog. Surv. Canada Bull., v.585, pp.10, Mackenzie Delta, Northwest Territories, Canada.Google Scholar
  34. Kundu, N., Pal, N., Sinha, N. and Budhiraja, I.L. (2008) Paleo hydrate and its role in deep water Plio-Pleistocene gas reservoirs in Krishna-Godavari basin, India, Proceedings of 6th ICGH, Vancouver, British Columbia, Canada, July 6–10. https://circle.ubc.ca/bitstream/2429/1065/1/5567.pdf
  35. Kvenvolden, K.A. (1998) A primer on geological occurrence of gas hydrate. In: J.P. Henriet and J. Mienert (Eds.), Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geol. Soc. London Spec. Publ., v.137, pp.9–30.Google Scholar
  36. Kvenvolden, K.A. (1999) Potential effects of gas hydrate on human welfare. Proc. National Acad. Sci., USA, v.96, pp.3420–3426.CrossRefGoogle Scholar
  37. Lee, M.W. and Collett, T.S. (2008) Integrated analysis of well logs and seismic data at the Keathley Canyon, Gulf of Mexico, for estimation of gas hydrate concentrations. Marine and Petroleum Geol., v.25, pp.924–931.CrossRefGoogle Scholar
  38. Lee, M.W. and Waite, W.F. (2008) Estimating pore-space gas hydrates saturations from well-log acoustic data, Geochemistry Geophysics Geosystems, v.9(7), Q07008, doi:10.1029/2008GC002081.CrossRefGoogle Scholar
  39. Mathews, M. (1986) Logging characteristics of methane hydrate, The Log Analyst, v.27(3), pp.26–63.Google Scholar
  40. Mazumdar, A., Paropkari, A.L., Borole, D.V., Rao, B.R., Khadge, N.H., Karisiddaiah, M., Kocherala, M. and Hilda, M.J. (2007) Pore-water sulfate concentration profiles of sediment cores from Krishna-Godavari and Goa basins, India. Geochmical Jour., v.41, pp.259–269.CrossRefGoogle Scholar
  41. Minshull, T.A., Singh, S.C. and Westbrook, G.K. (1994) Seismic velocity structure at a gas hydrate reflector, offshore western Columbia, from full waveform inversion, Jour. Geophys. Res., v.99, pp.4715–4734.CrossRefGoogle Scholar
  42. Paull, C.K. and Dillon, W.P. (Eds.) (2001) Natural Gas Hydrate: Occurrence, Distribution and Detection. Amer. Geophys. Union Monograph Series, v.124, pp.53–66.Google Scholar
  43. Pearson, C.F., Halleck, P.M., Mcguire, P.L., Hermes, R. and Mathews, M. (1983) Natural gas hydrate: a review of in situ properties. Jour. Physical Chemistry, v.87, pp.4180–4185.CrossRefGoogle Scholar
  44. Powell, C.M., Roots, S.R. and Veevers, J.J. (1988) Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean. Tectonophysics, v.155, pp.261–183.CrossRefGoogle Scholar
  45. Prabhakar, K.N. and Zutshi, P.L. (1993) Evolution of southern part of Indian East Coast Basin. Jour. Geol. Soc. India, v.41, pp.215–230.Google Scholar
  46. Prasad, K.L. and Rangaraju, M.K. (1987) Modern and recent canyon-fan systems in Masulipatnam Bay, Krishna-Godavari Basin, ONGC Bull., v.24(2), pp.59–71.Google Scholar
  47. Ramana, M.V., Ramprasad, T. and Desa, M. (2001) Seafloor spreading magnetic anomalies in the Enderby Basin, East Antarctica. Earth Planet. Sci. Lett., v.191, pp.241–255.CrossRefGoogle Scholar
  48. Ramana, M.V., Ramprasad, T., Desa, M., Sathe, A.V. and Sethi, A.K. (2006) Gas hydrate-related proxies inferred from multidisciplinary investigations in the Indian offshore areas. Curr. Sci., v.91(2), pp.183–189.Google Scholar
  49. Ramana, M.V., Ramprasad, T., Paropkari, A.L., Borole, D.V., Rao, B.R., Karisiddaiah, S.M., Desa, M., Kocherla, M., Joao, H.M., Lokabharati, P., Gonsalves, M.J., Pattan, J.N., Khadge, N.H., Babu, C.P., Sathe, A.V., Kumar, P. and Sethi, A.K. (2009) Multidisciplinary investigations exploring indicators of gas hydrate occurrence in the Krishna-Godavari Basin offshore, east coast of India. Geo-Marine Lett., v.29, pp.25–38.CrossRefGoogle Scholar
  50. Rao, D.P., Bhattacharya, G.C., Ramana, M.V., Subramanyam, V., Ramprasad, T., Krishna, K.S., Chaubey, A.K., Murty, G.P.S., Srinivas, K. and Desa, M. (1994) Analysis of multichannel seismic reflection and magnetic data along 13° N latitude across the Bay of Bengal. Marine Geophys. Res., v.16, pp.225–236.CrossRefGoogle Scholar
  51. Rao, G.N. (2001) Sedimentation, stratigraphy, and petroleum potential of Krishna-Godavari basin, East coast of India. Amer. Assoc. Petrol. Geologists, v.85(9), pp.1623–1643.Google Scholar
  52. Riedel, M., Novosel, I., Spence, G.D., Hyndman, R.D., Chapman, N.R. and Lewis, T. (2006) Geophysical and geochemical signatures associated with gas hydrate-related venting in the northern Cascadia margin. Geol. Soc. Amer. Bull., v.118(1), pp.23–38.CrossRefGoogle Scholar
  53. Riedel, M., Collett, T.S. and Shankar, U. (2010) Documenting channel features associated with gas hydrates in the Krishna-Godavari Basin, offshore India. Marine Geology, doi: 10.1016/j.margeo.2010.10.008.Google Scholar
  54. Ruppel, C., Dickens, G.R., Castellini, D.G., Gilhooly, W. and Lizarralde, D. (2005) Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico. Geophys. Res. Lett., v.32, pp.L04605.CrossRefGoogle Scholar
  55. Sager, W.W., Lee, C.S., Macdonald, I.R. and Schroeder, W.W. (1999) High-frequency near-bottom acoustic reflection signatures of hydrocarbon seeps on the northern Gulf of Mexico continental slope. Geo-Marine Lett., v.18, pp.267–276.CrossRefGoogle Scholar
  56. Sain, K. and Gupta, H.K. (2008) Gas hydrates: Indian scenario. Jour. Geol. Soc. India, v.72, pp.299–311.Google Scholar
  57. Sastri, V.V., Venkatachala, B.S. and Narayanan, V. (1981) The evolution of the east coast of India. Palaeogeo. Palaeont. Palaeoeco., v.36, pp.23–54.CrossRefGoogle Scholar
  58. Shankar, U. and Sain, K. (2009) Heat flow variation from bottom simulating reflector in the Kerala-Konkan basin of the western continental margin of India. Indian Jour.Marine Sci., v.38, pp.110–115.Google Scholar
  59. Shankar, U., Riedel, M. and Sathe, A.V. (2010) Geothermal modeling of the gas hydrate stability zone along the Krishna Godavari Basin. Marine Geophys. Res., v.31, pp.17–28.CrossRefGoogle Scholar
  60. Shankar, U. and Riedel, M. (2010) Seismic and heat flow constraints from the Krishna-Godavari Basin gas hydrate system. Marine Geol., v.276, pp.1–13.CrossRefGoogle Scholar
  61. Shipley, T.H., Houston, M.H., Buffler, R.T., Shaub, F.J., Mcmillen, K.J., Ladd, J.W. and Worzel, J.L. (1979) Seismic reflection evidence for the widespread occurrence of possible gas-hydrate horizons on continental slopes and rises. Amer. Assoc. Petroleum Geol. Bull., v.63, pp.2204–2213.Google Scholar
  62. Sloan, E.D. (1990) Clathrate Hydrates of Natural gases, Marcel Dekker, New York.Google Scholar
  63. Sloan, E.D. (1998) Clathrate hydrates of natural gases, second edition Marcel Dekker Inc., New York, pp.628.Google Scholar
  64. Spangenberg, E. (2001) Modeling of the influence of gas hydrate content on the electrical properties of porous sediments. Jour. Geophys. Res., v.106(B4), pp.6535–6548.CrossRefGoogle Scholar
  65. Townend, J. (1997) Estimates of conductive heat flow through bottom-simulating reflectors on the Hikurangi and southwest Fiordland continental margins, New Zealand. Marine Geol., v.141, pp.209–220.Google Scholar
  66. Vohat, P., Sain, K. and Thakur, N.K. (2003) Heat flow and geothermal gradient from BSR: a case study. Curr. Sci., v.85, pp.1263–1266.Google Scholar
  67. Yamano, M., Uyeda, S., Aoki, Y. and Shipley, T.H. (1982) Estimates of heat flow derived from gas hydrates. Geology, v.10, pp.339–343.CrossRefGoogle Scholar
  68. Yuan, T., Hyndman, R.D., Spence, G.D. and Desmons, B. (1996) Seismic velocity increase and deep-sea gas hydrate concentrations above a bottom-simulating reflector on the northern Cascadia continental slope. Jour. Geophys. Res., v.101, pp.13655–13671.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2012

Authors and Affiliations

  1. 1.CSIR-National Geophysical Research InstituteHyderabadIndia
  2. 2.Natural Resources Canada, Pacific Geoscience CenterGeological Survey of CanadaSidneyCanada

Personalised recommendations