Journal of the Geological Society of India

, Volume 78, Issue 5, pp 399–428 | Cite as

Deccan volcanism linked to the Cretaceous-Tertiary boundary mass extinction: New evidence from ONGC wells in the Krishna-Godavari Basin

  • G. Keller
  • P. K. Bhowmick
  • H. Upadhyay
  • A. Dave
  • A. N. Reddy
  • B. C. Jaiprakash
  • T. Adatte
Article

Abstract

A scientific challenge is to assess the role of Deccan volcanism in the Cretaceous-Tertiary boundary (KTB) mass extinction. Here we report on the stratigraphy and biologic effects of Deccan volcanism in eleven deep wells from the Krishna-Godavari (K-G) Basin, Andhra Pradesh, India. In these wells, two phases of Deccan volcanism record the world’s largest and longest lava mega-flows interbedded in marine sediments in the K-G Basin about 1500 km from the main Deccan volcanic province. The main phase-2 eruptions (∼80% of total Deccan Traps) began in C29r and ended at or near the KTB, an interval that spans planktic foraminiferal zones CF1–CF2 and most of the nannofossil Micula prinsii zone, and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began in phase-2 preceding the first of four mega-flows. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 mega-flow at the KTB. The mass extinction was likely the consequence of rapid and massive volcanic CO2 and SO2 gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbon crisis in the marine environment.

Deccan volcanism phase-3 began in the early Danian near the C29R/C29n boundary correlative with the planktic foraminiferal zone P1a/P1b boundary and accounts for ~14% of the total volume of Deccan eruptions, including four of Earth’s longest and largest mega-flows. No major faunal changes are observed in the intertrappeans of zone P1b, which suggests that environmental conditions remained tolerable, volcanic eruptions were less intense and/or separated by longer time intervals thus preventing runaway effects. Alternatively, early Danian assemblages evolved in adaptation to high-stress conditions in the aftermath of the mass extinction and therefore survived phase-3 volcanism. Full marine biotic recovery did not occur until after Deccan phase-3. These data suggest that the catastrophic effects of phase-2 Deccan volcanism upon the Cretaceous planktic foraminifera were a function of both the rapid and massive volcanic eruptions and the highly specialized faunal assemblages prone to extinction in a changing environment. Data from the K-G Basin indicates that Deccan phase-2 alone could have caused the KTB mass extinction and that impacts may have had secondary effects.

Keywords

Cretaceous-Tertiary Mass extinction Deccan volcanism Longest lava flows Krishna-Godavari Basin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovich, S., Yovel-Corem, S., Almogi-Labin, A. and Benjamini, C. (2010) Global climate change and planktic formaminiferal response in the Maastrichtian. Paleoceanography, v.25, PA2201, doi: 10.1029/2009PA001843.CrossRefGoogle Scholar
  2. Abramovich, S. and Keller, G. (2002) High stress late Maastrichtian Paleoenvironment in Tunisia: Inference from planktic foraminifera. Paleogeog., Paleoclimat., Paleoeco., v.178, pp.145–164.CrossRefGoogle Scholar
  3. Abramovich, S. and Keller, G. (2003) Planktic foraminiferal response to latest Maastrichtian abrupt warm event a case study from mid-latitude DSDP Site 525. Mar. Micropal., v.48, pp.225–249.CrossRefGoogle Scholar
  4. Abramovich, S., Keller, G., Adatte, T., Stinnesbeck, W., Hottinger, L., Stueben, D., Berner, Z., Ramanivosoa, B. and Randriamanantenasoa, A. (2002) Age and Paleoenvironment of the Maastrichtian-Paleocene of the Mahajanga Basin, Madagascar: a multi-disciplinary approach. Mar. Micropaleo., v.47, pp.17–70.CrossRefGoogle Scholar
  5. Abramovich, S., Keller, G., Stueben, D. and Berner, Z. (2003) Characterization of late Campanian and Maastrichtian planktic foraminiferal depth habitats and vital activities based on stable isotopes. Paleoclimat. Paleoecol. Paleogeog., v.202, pp.1–29.CrossRefGoogle Scholar
  6. Baksi, A.K. (2005) Comment on “40Ar/39Ar dating of the Rajahmundry Traps, eastern India and their relations to the Deccan Traps” by Knight et al. [Earth and Planet Sci. Lett. 208 (2003) 85–99]. Earth Planet. Sci. Lett., v.239, pp.368–373.CrossRefGoogle Scholar
  7. Baksi, A.K., Byerly, G.R. Chan, L.-H. and Farrar, E. (1994) Intracanyon flows in the Deccan province, India: Case history of the Rajahmundry Traps. Geology, v.22, pp.605–608.CrossRefGoogle Scholar
  8. Berggren, W.A., Kent, D.V., Swisher, C.C. and Aubry, M.-P. (1995) A revised Cenozoic geochronology and chronostratigraphy. In: W.A. Berggren, D.V. Kent, M.-P. Aubry, Nd J. Hardenbol (Eds.), Geochronology, Time Scales and Global Stratigraphic Correlation, SEPM, Spec. Publ., no.54, pp.129–212.Google Scholar
  9. Cande, S. and Kent, D.V. (1995) Revised calibration of the geomagnetic polarity Timescale for the Late Cretaceous and Cenozoic. Jour. Geophys. Res., v.100, pp.6093–6095.CrossRefGoogle Scholar
  10. Caron, M. (1985) Cretaceous planktic foraminifera. In: H.M. Bolli, J.B. Saunders and K. Perch-Nielsen (Eds.), Plankton Stratigraphy: Cambridge. Cambridge University Press, pp.17–86.Google Scholar
  11. Chenet, A.-L., Quidelleur, X., Fluteau, F. and Courtillot, V. (2007) 40K/40Ar dating of the main Deccan large igneous province: further evidence of KTB age and short duration. Earth Planet. Sci. Lett., v.263, pp.1–15.CrossRefGoogle Scholar
  12. Chenet, A.-L., Fluteau, F., Courtillot, V., Gerard, M. and Subbarao, K.V. (2008) Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar. Jour. Geophys. Res., v.113, doi:10.1029/2006JB004635.Google Scholar
  13. Chenet, A.-L., Courtillot, V., Fluteau, F., Gerard, M., Quidelleur, X., Khadri, S.F.R., Subbarao, K.V. and Thordarson, T. (2009) Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paloemangnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500 mthick composite section. Jour. Geophys. Res., v.114, B06103, doi:10.1029/2008JB005644.CrossRefGoogle Scholar
  14. Coccioni, R. and Luciani, V. (2006) Guembelitria irregularis bloom at the K-T boundary: Morphological abnormalities induced by impact-related extreme environmental stress? In: C. Cockell, C. Koeberl and I. Gilmour, I. (Eds.), Biological Processes Associated with Impact Events. Impact Studies, Springer, pp.179–196.Google Scholar
  15. Courtillot, V., Besse, J., Vandamme, D., Montigny, R., Jaeger, J.-J. and Cappetta, H. (1986) Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth Planet. Sci. Lett., v.80, pp.361–374.CrossRefGoogle Scholar
  16. Courtillot, V., Feraud, G., Maluski, H., Vandamme, D., Moreau, M.G. and Besse, J. (1988) The Deccan flood basalts and the Cretaceous-Tertiary boundary. Nature, v.333, pp.843–846.CrossRefGoogle Scholar
  17. Courtillot, V., Gallet, Y., Rocchia, R., Feraud, G., Robin, E., Hofmann, C., Bhandari, N. and Ghevariya, Z.G. (2000) Cosmic markers, 40Ar/39Ar dating and Paleomagnetism of the KT sections in the Anjar area of the Deccan large igneous province. Earth Planet. Sci. Lett., v.182, pp.137–156.CrossRefGoogle Scholar
  18. Cowie, J.W., Ziegler, W. and Remane, J. (1989) Stratigraphic Commission accelerates Progress, 1984 to 1989. Episodes, v.12, pp.79–83.Google Scholar
  19. Deconto, R. M., Brady, E.C., Bergengren, J. and Hay, W.W. (2000) Late Cretaceous climate, vegetation, and ocean interactions, in Warm Climate in Earth History, In: B.T. Huber, K.G. MacLeod and S.L. Wing (Eds.), Cambridge Univ. Press, New York. pp.241–274.Google Scholar
  20. Dessert, C., Dupre, B., Gaillardet, J., Francois, L.M. and Allegre, C.J. (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geol., v.202, pp.257–273.CrossRefGoogle Scholar
  21. Donnadieu, Y., Pierrehumbert, R., Jacob, R. and Fluteau, F. (2006) Modelling the primary control of paleogeography on Cretaceous climate. Earth Planet. Sci. Lett., v.248, pp.426–437.CrossRefGoogle Scholar
  22. Duncan, R.A. and Pyle, D.G. (1988) Rapid Eruption of the Deccan Flood Basalts at the Cretaceous/Tertiary boundary. Nature, v.333, pp.841–843.CrossRefGoogle Scholar
  23. Garg, R., Khowaja-Ateequzzaman and Prasad, V. (2006) Significant dinoflagellate cyst biohorizons in the Upper Cretaceous-Palaeocene succession in the Khasi Hills, Meghalaya. Jour. Geol. Soc. India, v.67, pp.737–747.Google Scholar
  24. Gertsch, B., Keller, G., Adatte, T. Garg, R. Prasad, V., Fleitmann, D. and Berner, Z. (2011) Environmental effects of Deccan volvanism across the Cretaceous-Tertiary transition in Meghalaya, India. Earth Planet. Sci. Lett., v., pp.310, pp.272–285Google Scholar
  25. Govindan, A. (1981) Foraminifera from the infra- and intertrappean subsurface sediments of Narsapur Well-1 and age of the Deccan Trap flows. Proc. 9th Indian Colloquium of Micropalaeontology and Stratigraphy, pp.81–93.Google Scholar
  26. Gradstein, F., Ogg, J. and Smith, A. (2004) A Geologic Time Scale. Cambridge, U.K. Cambridge University Press, 598p.CrossRefGoogle Scholar
  27. Jaiprakash, B.C., Singh, J. and Raju, D.S.N. (1993) Foraminiferal events across the K/T boundary and age of Deccan volcanism in Palakollu area, Krishna-Godavari Basin, India. Jour. Geol. Soc. India, v.41, pp.105–117.Google Scholar
  28. Jay, A.E. and Widdowson, M. (2008) Stratigraphy, structure and volcanology of the south-east Deccan continental flood basalt province: implications for eruptive extent and volumes. Jour. Geol. Soc. London, v.165, pp.177–188.CrossRefGoogle Scholar
  29. Jay, A.E., Mac Niocaill, C., Widdoson, M., Self, S. and Tuner, W. (2009) New Palaeomagnetic data from the Mahabaleshwar Plateau, Deccan Flood Basalt Province, India: Implications from the volcanostratigraphic architecture of Continental Flood Basalt Provinces. Jour. Geol. Soc. London, v.166, pp.1–12.CrossRefGoogle Scholar
  30. Keller, G. (1988) Extinctions, survivorship and evolution across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Mar. Micropal., v.13, pp.239–263.CrossRefGoogle Scholar
  31. Keller, G. (1989) Extended Cretaceous/Tertiary boundary extinctions and delayed population change in planktic foraminifera from Brazos River, Texas. Paleoceanography, v.4(3), pp.287–332.CrossRefGoogle Scholar
  32. Keller, G. (2001) The end-Cretaceous Mass Extinction: Year 2000 Assessment. Jour. Planet. Space Sci., v.49, pp.817–830.CrossRefGoogle Scholar
  33. Keller, G. (2003) Biotic effects of impacts and volcanism. Earth Planet. Sci. Lett., v.215, pp.249–264.CrossRefGoogle Scholar
  34. Keller, G. (2008) Impact Stratigraphy: old principle — new reality. Geol. Soc. America, Special Paper no.437, pp.147–178.Google Scholar
  35. Keller, G. and Lindinger, M. (1989) Stable Isotope, TOC and CaCO3 record across the Cretaceous/Tertiary Boundary at El Kef, Tunisia, Paleogeog., Paleoclimat., Paleoecol., v.73(3/4), pp.243–265.CrossRefGoogle Scholar
  36. Keller, G. and Abramovich, S. (2009) Lilliput effect in late Maastrichtian planktic foraminifera: Response to environmental stress. Palaeogeo. Palaeoclimat., Palaeoec., v.284, pp.47–62.CrossRefGoogle Scholar
  37. Keller, G., D’HONDT, S.L. and Vallier, T.L. (1983) Multiple microtectite horizons in upper Eocene marine sediments: no evidence for mass extinctions Science, v.221, pp.150–152.CrossRefGoogle Scholar
  38. Keller, G., Li, L. and Macleod, N. (1995) The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: How catastrophic was the mass extinction? Paleogeog., Paleoclimat., Paleoecol., v.119, pp.221–254.CrossRefGoogle Scholar
  39. Keller, G., Adatte, T., Stinnesbeck, W., Luciani, V., Karoui, N. and Zaghbib-Turki, D. (2002) Paleoecology of the Cretaceous-Tertiary mass extinction in planktic foraminifera. Paleogeog., Paleoclimat., Paleoecol., v.178, pp.257–298.CrossRefGoogle Scholar
  40. Keller, G., Adatte, T., Tantawy, A. A., Berner, Z. and Stueben, D. (2007a) High Stress Late Cretaceous to early Danian paleoenvironment in the Neuquen Basin, Argentina. Cret. Res., v.28, pp.939–960.CrossRefGoogle Scholar
  41. Keller, G., Adatte, T., Berner, Z., Harting, M., Baum, G., Prauss, M., Tantawy, A.A. and Stueben, D. (2007b) Chicxulub impact predates KT boundary: new evidence from Brazos, Texas: Earth Planet. Sci. Lett., v.25(3–4), pp.339–356.Google Scholar
  42. Keller, G., Adatte, T., Gardin, S., Bartolini, A. and Bajpai, S. (2008) Main Deccan volcanism phase ends near the K-T boundary: Evidence from the Krishna-Godavari Basin, SE India. Earth Planet. Sci. Lett., v.268, pp.293–311.CrossRefGoogle Scholar
  43. Keller, G., Khosla, S.C., Sharma, R., Khosla, A., Bajpai, S. and Adatte, T. (2009a) Early Danian planktic foraminifera from Cretaceous-Tertiary intertrappean beds at Jhilmili, Chhindwara District, Madhya Pradesh, India. Jour. Foram. Res., v.39, pp.40–55.CrossRefGoogle Scholar
  44. Keller, G., Adatte, T., Bajpai, S., Mohabey, D.M., Widdowson, M., Khosla, A., Sharma, R., Khosla, S. C., Gertsch, B., Fleitmann, D. and Sahni, A. (2009b) K-T transition in Deccan traps and intertrappean beds in central India mark major marine Seaway across India. Earth Planet. Sci. Lett., v.282, pp.10–23.CrossRefGoogle Scholar
  45. Keller, G., Sahni, A. and Bajpai, S. (2009c) Deccan volcanism, the KT mass extinction and dinosaurs. Jour. Biosciences, v.34, pp.709–728.CrossRefGoogle Scholar
  46. Keller, G., Adatte, T., Pardo Juez, A. and Lopez-Oliva, J. (2009d) New evidence concerning the age and biotic effects of the Chicxulub impact in NE Mexico. Jour. Geol. Soc. London, v.166, pp.393–411.CrossRefGoogle Scholar
  47. Keller, G., Abramovich, S., Berner, Z. and Adatte, T. (2009e) Biotic effects of the Chicxulub impact, K-T catastrophe and sea-level change in Texas. Paleogeog. Paleoclimat. Paleoecol., v.271, pp.52–68.CrossRefGoogle Scholar
  48. Kidder, K.L. and Worsley, T.R. (2010) Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions: Palaeogeog., Palaeoclimat., Palaeoecol., v.295, pp.162–191.CrossRefGoogle Scholar
  49. Knight, K.B. Renne, P.R. Halkett, A. and White, N. (2003) 40Ar/39Ar dating of the Rajahmundry Traps, eastern India and their relationship to the Deccan Traps. Earth Planet. Sci. Lett., v.208, pp.85–99.CrossRefGoogle Scholar
  50. Knight, K.B., Renne, P.R., Baker, J., Waight, T. and White, N. (2005) Reply to 40Ar/39Ar dating of the Rajahmundry Traps, Eastern India and their relationship to the Deccan Traps: Discussion’ by A.K. Baksi. Earth Planet. Sci. Lett., v.239, pp.374–382.CrossRefGoogle Scholar
  51. Kucera, M. and Malmgren, B.A. (1998) Terminal Cretaceous warming event in the mid-latitude South Atlantic Ocean: evidence from poleward migration of Contusotruncana contusa (planktonic foraminifera) morphotypes. Palaeogeog., Palaeoclimat., Palaeoec, v.138, pp.1–15.CrossRefGoogle Scholar
  52. Li, L. and Keller, G. (1998a) Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera of South Atlantic DSDP Sites 525A and 21. Mar. Micropal., v.33(1–2), pp. 55–86.CrossRefGoogle Scholar
  53. Li, L. and Keller, G. (1998b) Diversification and extinction in Campanian-Maastrichtian planktic foraminifera of northwestern Tunisia: Eclogae Geol. Helvetiae, v.91, pp.75–102.Google Scholar
  54. Li, L. and Keller, G. (1998c) Abrupt deep-sea warming at the end of the Cretaceous. Geology, v.26(11), pp.995–998.CrossRefGoogle Scholar
  55. Luciani, V. (2002) High resolution planktonic foraminiferal analysis from the Cretaceous/Tertiary boundary at Ain Settara (Tunisia): Evidence of an extended mass extinction. Palaeogeog., Palaeoclimat., Palaeoec., v.178(3), pp.299–319.CrossRefGoogle Scholar
  56. Malarkodi, N., Keller, G., Fayazudeen, P.J. and Mallikarjuna, U.B. (2010) Foraminifera from the early Danian Intertrappean beds in Rajahmundry Quarries, Andhra Pradesh, SE India. Jour. Geol. Soc. India, v.75, pp.851–863.CrossRefGoogle Scholar
  57. Mclean, D. (1978) A terminal Mesozoic “Greenhouse”: Lessons from the past. Science, v.201(4354), pp.401–406.CrossRefGoogle Scholar
  58. Mclean, D. (1985) Deccan Traps Mantle Degassing in the Terminal Cretaceous Marine Extinctions. Cretaceous Res., v.6, pp.235–259.CrossRefGoogle Scholar
  59. Mehrotra, N.C. and Sargeant, W.A.S. (1987) Late Cretaceous to Early Tertiary dinoflagellate cysts from Narsapur Well -1, Godavari-Krishna Basin, south-India, Geobios, v.20, pp.149–191.CrossRefGoogle Scholar
  60. Misra, K.S. (2005) Distribution pattern, age and duration and mode of eruption of Deccan and associated volcanics. Gondwana Geol. Mag., v.8, pp.53–60.Google Scholar
  61. Nordt, L., Atchley, S. and Dworkin, S. (2003) Terrestrial Evidence for Two Greenhouse Events in the Latest Cretaceous. GSA Today, v.13(12), pp.4–9.CrossRefGoogle Scholar
  62. Olsson, R.K., Wright, J.D. and Miller, K.D. (2001) Palobiogeography of Pseudotextularia elegans during the latest Maastrichtian global warming event. Jour. Foram. Res., v.31, pp.275–282.CrossRefGoogle Scholar
  63. Pande, K., Pattanayak, S.K., Subbarao, K.V., Navaneethakrishnan, P. and Venkatesan, T.R. (2004) 40Ar/39Ar age of a lava flow from the Bhimashankar Formation, Giravali Ghat, Deccan Traps. Proc. Indian Acad. Sci., v.113, pp.755–758.Google Scholar
  64. Pardo, A. and Keller, G. (2008) Biotic effects of environmental catastrophes at the end of the Cretaceous: Guembelitria and Heterohelix blooms. Cretaceous Res., v.29 (5/6), pp.1058–1073.CrossRefGoogle Scholar
  65. Prasad, B. and Pundeer, B.S. (2002) Palynological events and zones in Cretaceous-Tertiary Boundary sediments of Krishna-Godavari and Cauvery basins, India. Palaeontographica Abt. B, v.262, pp.39–70.Google Scholar
  66. Raju, D.S.N. (2008) Stratigraphy of India. ONGC Bull., Spec. Issue, no.43(1), 44p.Google Scholar
  67. Raju, D.S.N., Jaiprakash, B.C., Kumar, A., Saxena, R.K., Dave, A., Chatterjee, T.K. and Mishra, C.M. (1994) The magnitude of hiatus and sea-level changes across K/T boundary in Cauvery and Krishna-Godavari basins. India. Jour. Geol. Soc. India, v.44, pp.301–315.Google Scholar
  68. Raju, D.S.N., Jaiprakash, B.C. Kumar, A. Saxena, R.K. Dave, A. Chatterjee, T.K. and Mishra, C.M. (1995) Age of Deccan volcanism across KTB in Krishna-Godavari Basin: new evidences. Jour. Geol. Soc. India, v.45, pp.229–233.Google Scholar
  69. Raju, D.S.N. Jaiprakash, B.C. and Kumar, A. (1996) Paleoenvironmental set-up and age of basin floor just prior to the spread of Deccan volcanism in the Krishna-Godavari Basin, India. Mem Geol. Soc. India, v.37, pp.285–295.Google Scholar
  70. Remane, J., Keller, G., Hardenbol, J. and ben Haj Ali, M. (1999) Report on the international workshop on Cretaceous-Paleogene transition: Episodes, v.22(1), pp.47–48.Google Scholar
  71. Rocchia, R., Robin, E., Froget, L. and Gayraud, J. (1996) Stratigraphic distribution of extraterrestrial markers at the Cretaceous-Tertiary boundary in the Gulf of Mexico area: implications for the temporal complexity of the event. In: Ryder, G., Fastovsky, D. and Gartner, S. (Eds.), The Cretaceous-Tertiary event and other Catastrophes in Earth history. Geol. Soc. America, Spec. Paper no.307, pp.279–286.Google Scholar
  72. Saxena, R.K. and Misra, C.M. (1994) Time and duration of Deccan volcanism in the Razole area, Krishna-Godavari Basin, India. Curr. Sci., v.66(1), pp.73–76.Google Scholar
  73. Saxena, R.K. and Misra, C.M. (1995) Campanian-Maastrichtian nannoplankton biostratigraphy of the Narsapur claystone Formation, Krishna-Godari Basin, India. Jour. Geol. Soc. India, v.45, pp.323–329.Google Scholar
  74. Self, S., Jay, A.E., Widdowson, M. and Keszthelyi, L.P. (2008a) Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth? Jour. Volc. and Geoth. Res., v.172, pp.3–19.CrossRefGoogle Scholar
  75. Self, S., Blake, S., Sharma, K., Widdowson, M. and Sephton, S. (2008b) Sulfur and Chlorine in Late Cretaceous Deccan Magmas and Eruptive gas release. Science, v.319, pp.1654–1657.CrossRefGoogle Scholar
  76. Sheth, H.C., Pande, K. and Bhutani, R. (2001) 40Ar/39Ar age of a national geological monument: The gilbert Hill basalt, Deccan Traps, Bombay. Curr. Sci., v.80, pp.1437–1440.Google Scholar
  77. Tantawy A.A. (2003) Calcareous nannofossil biostratigraphy and paleoecology of the Cretaceous-Tertiary transition in the western desert of Egypt. Mar. Micropal., v.47, pp.323–356.CrossRefGoogle Scholar
  78. Venkatesan, T.R., Pande, K. and Gopalan, K. (1993) Did Deccan volcanism pre-date the Cretaceous-Tertiary transition? Earth Planet. Sci. Lett., v.119(1–2), pp.181–189.CrossRefGoogle Scholar
  79. Venkatarengan, R., Rao, G.N., Prabhakar, K.N., Singh, D.N., Awasthi, A.K., Reddy, P.K., Mishra, P.K. and Roy, S.K. (1993) Lithostratigraphy of the Krishna-Godavari Basin, Unpublished ONGC Internal Document III, Allied Printers, Dehradun, pp.1–29.Google Scholar
  80. Von Salis, K. and Saxena, R.K. (1998) Calcareous nannofossils across the K/T boundary and the age of the Deccan Trap volcanism in southern India. Jour. Geol. Soc. India, v.51, pp.183–192.Google Scholar
  81. Wilf, P., Johnson, K.R. and Huber, B.T. (2003) Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proc. Nat. Acad. Sci., USA, v.100(2), pp.599–604.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2011

Authors and Affiliations

  • G. Keller
    • 1
  • P. K. Bhowmick
    • 2
  • H. Upadhyay
    • 2
  • A. Dave
    • 2
  • A. N. Reddy
    • 3
  • B. C. Jaiprakash
    • 3
  • T. Adatte
    • 4
  1. 1.Geosciences DepartmentPrinceton UniversityPrincetonUSA
  2. 2.KDMIPEONGCDehradunIndia
  3. 3.Regional Geoscience LaboratoryONGCChennaiIndia
  4. 4.Geological and Paleontological InstituteAnthropoleLausanne, Switzerland

Personalised recommendations