Geochemistry of sandstones from the Upper Cretaceous Sillakkudi Formation, Cauvery Basin, southern India: Implication for provenance

  • D. Bakkiaraj
  • R. Nagendra
  • R. Nagarajan
  • John S. Armstrong-Altrin


Major, trace and rare earth elements (REE) composition of sandstones from the Upper Cretaceous Sillakkudi Formation, Ariyalur Group, Cauvery Basin were studied to decipher their weathering and provenance history. Texturally, these sandstones are immature, poorly sorted and grain supported. Abundance of feldspars especially, plagioclase indicates rapid deposition of sediments from a nearby source rocks. Using the geochemical classification diagram the Sillakkudi sandstones are classified as fe-sand, quartz arenite, litharenite, sub-litharenite, sub-arkose, arkose, and wacke types, which is also supported by the petrography study. The transition trace elements like Co, Ni, and V are higher in the Sillakkudi sandstones than upper continental crust (UCC) values. However, the Sillakkudi sandstones are lower in Cr (mean ∼21) content than average UCC value (∼ 35). The poor correlation between Cr and Ni (r = 0.08, number of samples n = 20) imply that these sandstones were derived from felsic source rocks. Similarly, the Eu/Eu* (0.35–1.73), La/Sc (1.93–9.36), Th/Sc (0.41–6.57), Th/Co (0.14–5.01), Th/Cr (0.23–2.94), and Cr/Th (0.34–4.28) ratios support a felsic source for the Sillakkudi sandstones. The significant enrichment of Zr, Hf, and Th in fe-sand, sub-arkose and litharenite could be related to the presence of heavy minerals, especially zircon. However, the zircon geochemistry did not affect the REE distribution and its patterns in the Sillakkudi sandstones. The Chondrite normalized REE patterns of Sillakkudi sandstones are characterized by relatively flat HREE (Gd/YbCN = ∼ 0.73–2.41; subscript CN refers to chondrite normalized value), enriched LREE (La/SmCN = ∼ 3.39–5.82) and negative Eu anomaly (mean value Eu/Eu* = 0.80). The Gd/YbCN ratios (∼0.73–2.50) are less than 2.5, which suggest that these Sillakkudi sandstones were derived from the less HREE depleted source rocks. The comparison of REE patterns and its Eu anomalies to the source rocks reveals that the Sillakkudi sandstones received a major contribution of sediments from Dharwar craton.


Geochemistry Zircon sandstones Upper Cretaceous Sillakkudi Cauvery Basin 


  1. Allen, P., Condie, K.C. and Narayana, B.L. (1985) Geochemistry of prograde and retrograde charnockite-gneiss reactions in southern India. Geochim. Cosmochim. Acta, v.49, pp.323–336.CrossRefGoogle Scholar
  2. Araújo, C.E.G., Pinéo, T.R.G., Caby, R., Costa, F.G., Cavalcante, J.C., Vasconcelos, A.M. and Rodrigues, J.B. (2010) Provenance of the Novo Oriente Group, southwestern Ceará Central Domain, Borborema Province (NE-Brazil): A dismembered segment of a magma-poor passive margin or a restricted rift-related basin? Gondwana Res., v.18, pp.497–513.CrossRefGoogle Scholar
  3. Armstrong-Altrin, J.S. (2009) Provenance of sands from Cazones, Acapulco, and BahÍa Kino beaches, Mexico, Revista Mexicana de Ciencias Geológicas, v.26(3), pp.764–782.Google Scholar
  4. Armstrong-Altrin, J.S. and Verma, S.P. (2005) Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic setting. Sediment. Geol., v.177, pp.115–129.CrossRefGoogle Scholar
  5. Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P. and Ramasamy, S. (2004) Geochemistry of sandstones from the upper Miocene Kudankulam formation, Southern India: Implications for provenance, weathering, and tectonic setting. Jour. Sed. Res., v.74(2), pp.285–297.CrossRefGoogle Scholar
  6. Asiedu., D. K., Suzuki, S., Nogami, K. and Shibata, T. (2000) Geochemistry of Lower Cretaceous sediments, Inner Zone of Southwest Japan: Constraints on provenance and tectonic environment. Geochem. Jour., v.34, pp.155–173.Google Scholar
  7. Ayyasami, K. (2006) Role of oysters in biostratigraphy: A case study from the Cretaceous of the Ariyalur area, southern India. Geosci. Jour., v.10(3), pp.237–247.CrossRefGoogle Scholar
  8. Banerji, R.K. (1979) On the occurrence of Tertiary algal reefs in the Cauvery basin and their stratigraphic relationship. Geol. Surv. India Misc. Publ., v.45, pp.181–196.Google Scholar
  9. Bhatia, M.R. (1983) Plate tectonics and geochemical composition of sandstones. Jour. Geol., v.91, pp.611–627.CrossRefGoogle Scholar
  10. Bhatia, M.R. (1985) Rare earth element geochemistry of Australian Paleozoic greywackes and mudstones: provenance tectonic control. Sediment. Geol., v.45, pp.97–113.CrossRefGoogle Scholar
  11. Blanford, H.F. (1862) On the Cretaceous and other rocks of the SouthArcot and Trichinopoly districts. Mem. Geol. Soc. India., v.4, pp.1–217.Google Scholar
  12. Blatt, H. G., Middleton, G. V. and Murray, R. C. (1980) Origin of Sedimentary Rocks. 2nd ed., Prentice-Hall, New Jersey, 634p.Google Scholar
  13. Bock, B., Mclennan, S.M. and Hanson, G.N. (1998) Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. Sedimentol., v.45, pp.635–655.CrossRefGoogle Scholar
  14. Carranza-Edwards, A., Kasper-Zubillaga, J.J., Rosales-Hoz, L., Alfredo-Morales, E. and Santa-Cruz, R.L. (2009) Beach sand composition and provenance in a sector of the southwestern Mexican Pacific. Revista Mexicana de Ciencias Geológicas, v.26(2), pp.433–447.Google Scholar
  15. Chacko, T., Ravindra Kumar G.R., Meen, J.K. and Rogers, J.W. (1992) Geochemistry of high-grade supracrustal rocks from the Kerala Khondalite Belt and adjacent massif charnockites, South India. Precambrian Res., v.55, pp.469–489CrossRefGoogle Scholar
  16. Chakrabarti, R., Basu, A.R. and Chakrabarti, A. (2007) Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, Central India. Precambrian Res., v.159, pp.260–274.CrossRefGoogle Scholar
  17. Chakrabarti, G., Shome, D., Bauluz, B. and Sinha, S. (2009) Provenance and Weathering History of Mesoproterozoic Clastic Sedimentary Rocks from the Basal Gulcheru Formation, Cuddapah Basin, India. Jour. Geol. Soc. India, v.74, pp.119–130.CrossRefGoogle Scholar
  18. Condie, K.C. (1991) Another look at rare earth elements in shales. Geochim. Cosmochim. Acta., v.55, pp.2527–2531.CrossRefGoogle Scholar
  19. Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol., v.104, pp.1–37.CrossRefGoogle Scholar
  20. Condie, K.C., Lee, D. and Farmer, L. (2001) Tectonic setting and provenance of the Neoproterozoic Uinta Mountain and Big Cootonwood groups, northern Utah: constraints from geochemistry, Nd isotopes, and detrital modes. Sediment. Geol., v.141–142, pp.443–464.CrossRefGoogle Scholar
  21. Cox, R., Low, D.R. and Cullers, R.L., (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta., v.59(14), pp.2919–2940.CrossRefGoogle Scholar
  22. Cullers, R. L. (1994) The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian — Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim. Cosmochim. Acta., v.58(22), pp.4955–4972.CrossRefGoogle Scholar
  23. Cullers, R.L. (1995) The controls on the major and trace element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountain region, Colorado, U.S.A. Chem. Geol., v.123(1–4), pp.107–131.CrossRefGoogle Scholar
  24. Cullers, R.L. (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, U.S.A.: implications for provenance and metamorphic studies. Lithos, v.51, pp.305–327.CrossRefGoogle Scholar
  25. Cullers, R.L. (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chem. Geol., v.191(4), pp.305–327.CrossRefGoogle Scholar
  26. Cullers, R.L. and Graf, J. (1984) Rare earth element in igneous rocks of the continental crust: intermediate and silicic rocks, ore petrogenesis. In: P. Henderson (Ed.), Rare Earth Geochemistry. Elsevier, pp.275–316.Google Scholar
  27. Cullers, R.L. and Podkovyrov, V.N. (2000) Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Res., v.104(1–2), pp.77–93.CrossRefGoogle Scholar
  28. Cullers, R.L., Basu, A. and Suttner, L. (1988) Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chem. Geol., v.70(4), pp.335–348.CrossRefGoogle Scholar
  29. Das, B.K., Al-Mikhlafi, A.S. and Kaur, P. (2006) Geochemistry of Mansar lake sediments, Jammu, India: Implication for source-area weathering, provenance, and tectonic setting. Jour. Asian Earth Sci., v.26(6), pp.649–668.CrossRefGoogle Scholar
  30. Dey, S., Rai, A.K. and Chaki, A. (2009) Palaeoweathering, composition and tectonics of provenance of the Proterozoic intracratonic Kaladgi-Badami basin, Karnataka, southern India: Evidence from sandstone petrography and geochemistry. Jour. Asian Earth Sci, v.34, pp.703–715.CrossRefGoogle Scholar
  31. Dickinson, W.R. (1970) Interpreting detrital modes of greywacke and arkose. Jour. Sediment. Petrol., v.40, pp.695–707.Google Scholar
  32. Fanti, F. (2009). Bentonite chemical features as proxy of late Cretaceous provenance changes: A case study from the Western Interior Basin of Canada. Sediment. Geol., v.217, pp.112–127.CrossRefGoogle Scholar
  33. Feng, R. and Kerrich, R. (1990) Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstones belt, Canada: implications for provenance and tectonic setting. Geochim. Cosmochim. Acta., v.54, pp.1061–1081.CrossRefGoogle Scholar
  34. Garcia, D., Ravenne, C., Maréchal, B. and Moutte, J. (2004) Geochemical variability induced by entrainment sorting: quantified signals for provenance analysis. Sediment. Geol., v.171(1–4), pp.113–128.CrossRefGoogle Scholar
  35. Gazzi, P. (1966) Le arenarie del flysch sopracretaceo dell’Appennino modensese: Correlazioni con il flysch di Monghidoro. Miner. Petrographica Acta, v.12, pp.69–97.Google Scholar
  36. Govindan, A., Ravindran, C.N. and Rangaraju, M.K. (1996) Cretaceous stratigraphy and planktonic foraminiferal zonation of Cauvery Basin, South India. In: A. Sahni (Ed.), Cretaceous Stratigraphy and Palaeoenvironments. Mem. Geol. Soc. India, no.37, pp.155–187.Google Scholar
  37. Herron, M.M. (1988) Geochemical classification of terrigenous sands and shales from core or log data. Jour. Sediment. Petrol., v.58, pp.820–829.Google Scholar
  38. Hurowitz, J.A. and Mclennan, S.M. (2005) Geochemistry of Cambro-Ordovician Sedimentary Rocks of the Northeastern United States: Changes in Sediment Sources at the Onset of Taconian Orogenesis. Jour. Geol., v.113, pp.571–587.CrossRefGoogle Scholar
  39. Jayananda, M., Martin, H., Peucat, J.J. and Mahabaleswar, B. (1995) Late Archaean crust-mantle interactions: geochemistry of LREE-enriched mantle derived magmas. Example of the Clospet batholith, southern India. Contrib. Mineral. Petrol., v.119(2–3), pp.314–329.Google Scholar
  40. Joo, Y.J., Lee, Y.I. and Bai, Z. (2005) Provenance of the Qingshuijian Formation (Late Carboniferous), NE China: Implications for tectonic processes in the northern margin of the North China block. Sediment. Geol., v.177, pp.97–114.CrossRefGoogle Scholar
  41. Kasanzu, C., Maboko, M.A.H. and Manya, S. (2008) Geochemistry of fine grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for provenance and source rock weathering. Precambrian Res., pp.201–213.Google Scholar
  42. Kasper-Zubillaga, J. J., Carranza-Edwards, A. and Mortonbermea, O. (2008) Heavy Minerals and Rare Earth Elements in Coastal and Inland Dune Sands of El Vizcaino Desert, Baja California Peninsula, Mexico. Marine Georesources & Geotechnology, v.26(3), pp.172–188.CrossRefGoogle Scholar
  43. Khudoley, A.K., Rainbird, R.H., Stern, R.A., Kropachev, A.P., Heaman, L.M., Zanin, A.M., Podkovyrov, V.N., Belova, V.N. and Sukhorukov, V.I. (2001) Sedimentary evolution of the Riphean-Vendian basin of southeastern Siberia. Precambrian Res., v.111, pp.129–163.CrossRefGoogle Scholar
  44. Kimberley, M.M. and Grandstaff, D.F. (1986) Profiles of elemental concentrations in Precambrian paleosols on basaltic and granitic parent materials. Precambrian Res., v.32, pp.133–154.CrossRefGoogle Scholar
  45. Lamaskin, T.A., Dorsey, R. and Vervoort, J.D. (2008) Tectonic controls on mudrock geochemistry, Mesozoic rocks of eatern oregon and western Idaho, U.S.A.: Implications for Cordilleran tectonics. Jour. Sediment. Res., v.78, pp.765–783.CrossRefGoogle Scholar
  46. Lindsey, D.A. (1999) An evaluation of alternative chemical classifications of sandstones. USGS Open File Report 99-34, 23p.Google Scholar
  47. Liu, S., Lin, G., Liu, Y., Zhou, Y., Gong, F. and Yan, Y. (2007) Geochemistry of Middle Oligocene-Pliocene sandstones from the Nanpu Sag, Bohai Bay Basin (Eastern China): Implications for provenance, weathering, and tectonic setting. Geochem. Jour., v.41(5), pp.359–378.CrossRefGoogle Scholar
  48. Madhavaraju, J. (1996) Petrofacies, geochemistry and depositional environments of Ariyalur Group of sediments, Tiruchirapalli Cretaceous, Tamil Nadu. Ph.D. thesis, University of Madras, 160p.Google Scholar
  49. Madhavaraju, J. and Ramasamy, S. (1999a) Rare earth elements in limestones of Kallankurichchi Formation of Ariyalur Group, Tiruchirapalli Cretaceous, Tamil Nadu. Jour. Geol. Soc. India, v.54, pp.291–301.Google Scholar
  50. Madhavaraju, J. and Ramasamy, S. (1999b) Microtextures on quartz grains of Campanian — Maastrichtian sediments of Ariyalur Group of Tiruchirapalli Cretaceous, Tamil Nadu — Implication on depositional environments. Jour. Geol. Soc. India, v.54, pp.647–658.Google Scholar
  51. Madhavaraju, J. and Ramasamy, S. (2001) Clay mineral assemblages and rare earth element distribution in the sediments of Ariyalur Group, Tiruchirapalli District, Tamil Nadu -Implication for paleoclimate. Jour. Geol. Soc. India, v.58, pp.69–77.Google Scholar
  52. Madhavaraju, J. and Lee, Y.I. (2009) Geochemistry of the Dalmiapuram Formation of the Uttatur Group (Early Cretaceous), Cauvery basin, southeastern India: Implications on provenance and paleo-redox conditions. Revista Mexicana de Ciencias Geológicas, v.26(2), pp.380–394.Google Scholar
  53. Madhavaraju, J., Ramasamy, S., Ruffell. A. and Mohan, S.P. (2002) Clay mineralogy of the Late Cretaceous and Early Tertiary Successions of the Cauvery Basin (southeastern India): Implications for sediment source and palaeoclimates at the K/T boundary. Cretaceous Res., v.23, pp.153–163.CrossRefGoogle Scholar
  54. Maravelis, A. and Zelilidis, A. (2009) Petrography and geochemistry of the late Eocene-early Oligocene submarine fans and shelf deposits on Lemnos Island, NE Greece. Implications for provenance and tectonic setting. Geol. Jour. DOI: 10.1002/gj.1183.Google Scholar
  55. Mclennan, S.M. (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes, in: B.R. Lipin, G.A. McKay (Eds.), Geochemistry and Mineralogy of Rare Earth Elements, Rev. Mineral., v.21, pp.169–200.Google Scholar
  56. Mclennan, S.M. and Taylor, S.R. (1991) Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Jour. Geol, v.99, pp.1–21.CrossRefGoogle Scholar
  57. Mclennan, S.M., Nance, W.B. and Taylor, S.R. (1980) Rare earth element-Thorium correlation in sedimentary rocks, and the composition of the continental crust. Geochim. Cosmochim. Acta., v.44, pp.1833–1839.CrossRefGoogle Scholar
  58. Mclennan, S.M., Taylor, S.R. and Eriksson, K.A. (1983) Geochemistry of Archaean shales from the Pilbara Supergroup, Western Australia. Geochim. Cosmochim. Acta., v.47(7), pp.1211–1222.CrossRefGoogle Scholar
  59. Mclennan, S.M., Taylor, S.R., Mcculloch, M.T. and Maynard, J.B. (1990) Geochemical and Nd-Sr isotopic composition of deep sea turbidites: Crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta., v.54, pp.2015–2050.CrossRefGoogle Scholar
  60. Mclennan, S.M., Hemming, S., Mcdaniel, D.K. and Hanson, G.N. (1993) Geochemical approaches to sedimentation, provenance, and tectonics. In: M.J. Johnson and A. Basu (Eds.), Processes Controlling the Composition of Clastic Sediments. Geol. Soc. Amer. Spec. Paper, v.284, pp.21–40.Google Scholar
  61. Nagarajan, R., Armstrong-Altrin, J.S., Nagendra, R., Madhavaraju, J. and Moutte, J. (2007a) Petrography and geochemistry of terrigenous sedimentary rocks in the Neoproterozoic Rabanpalli Formation, Bhima Basin, southern India: Implications for paleoweathering condition, provenance, and source rock composition. Jour. Geol. Soc. India, v.70(2), pp.297–312.Google Scholar
  62. Nagarajan, R., Madhavaraju, J., Nagendra, R., Armstrongaltrin, J.S. and Moutte, J. (2007b) Geochemistry of Neoproterozoic shales of Rabanpalli Formation, Bhima Basin, Northern Karnataka, Southern India: Implications for provenance and paleoredox conditions. Revista Mexicana Ciencias Geológicas, v.24(2), pp.150–160.Google Scholar
  63. Nesbitt, H.W. and Young, Y.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, v.299, pp.715–717.CrossRefGoogle Scholar
  64. Nesbitt, H.W. and Young, Y.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta., v.48, pp.1523–1534.CrossRefGoogle Scholar
  65. Pe-Piper, G., Triantafyllidis, S. and Piper, D.J.W. (2008) Geochemical identification of clastic sediment provenance from known sources of similar geology: the Cretaceous Scotian Basin, Canada. Jour. Sediment. Res, v.78, pp.595–607.CrossRefGoogle Scholar
  66. Pettijohn, F.H., Potter, P.E. and Siever, R. (1972) Sand and Sandstone. Springer-Verlag, New York, 618p.Google Scholar
  67. Prabhakar, K.N. and Zutshi, P.L. (1993) Evolution of southern part of Indian east coast basins. Jour. Geol. Soc. India, v.41, pp.215–230.Google Scholar
  68. Ramanathan, S. (1979) Tertiary formations of south India. Geol. Surv. India Misc. Publ., v.45, pp.165–180.Google Scholar
  69. Ramasamy, S. and Banerji, R.K. (1991) Geology, petrography and stratigraphy of pre-Ariyalur sequence in Tiruchirapalli District, Tamil Nadu. Jour. Geol. Soc. India, v.37, pp.577–594.Google Scholar
  70. Ramasamy, S., Madhavaraju, J. and Banerji, R.K. (1995) Paleoenvironmental indicators of the pre-Ariyalur sequence in Tiruchirapalli District, Tamil Nadu, India (abstract), In 2nd South Asia Geological Congress, Colombo, Sri Lanka, pp.158–159.Google Scholar
  71. Ranjan, N. and Banerjee, D.M. (2009) Central Himalayan crystallines as the primary source for the sandstone-mudstone suites of the Siwalik Group: New geochemical Evidence, Gondwana Res., v.16, pp.687–696.CrossRefGoogle Scholar
  72. Rangaraju, M.K., Agarwal. A. and Prabhakar, K.N. (1993) Tectono-stratigraphy, structural styles, evolutionary model and hydrocarbon habitat, Cauvery and Palar basins, In: S.K. Biswas, A. Dave, P. Garg, J. Pandey, A. Maithani and N.J. Thomas (Eds.), Proc. Second Seminar on Petroliferous Basins of India: Dehra Dun, Indian Petroleum Publ., v.1, pp.371–388.Google Scholar
  73. Roddaz, M., Viers, J., Brusset, S., Baby, P., Boucayrand, C. and Hérail, G. (2006) Controls on weathering and provenance in the Amazonian foreland basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments. Chem. Geol., v.226, pp.31–65.CrossRefGoogle Scholar
  74. Roser, B.P. and Korsch, R.J. (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Jour. Geol., v.94(5), pp.635–650.CrossRefGoogle Scholar
  75. Ryan, K.M. and Williams, D.M. (2007) Testing the reliability of discrimination diagram for determining the tectonic depositional environment of ancient sedimentary basins. Chem. Geol., v.242, pp.103–125.CrossRefGoogle Scholar
  76. Sastry, M.V.A., Mamgain, V.D. and Rao, B.R. (1972) Ostracod fauna of the Ariyalur Group (Upper Cretaceous) Tiruchirapalli District, Tamil Nadu. Part I. Lithostratigraphy of the Ariyalur Group. Mem. Geol. Surv. India, Palaentologica Indica, New Series, 40, pp.1–48.Google Scholar
  77. Selvaraj, K. and Chen, C.-T.A. (2006) Moderate chemical weathering of subtropical Taiwan: Constraints from solid-phase geochemistry of sediments and sedimentary rocks. The Journal of Geology, v.114(1), pp.101–116.CrossRefGoogle Scholar
  78. Sinha, S., Islam, R., Ghosh, S.K., Rohtash Kumar and Sangode, S.J. (2007) Geochemistry of Neogene Siwalik mudstones along Punjab re-entrant, India: Implications for source area weathering, provenance and tectonic setting. Curr. Sci., v.92(8), pp.1103–1113.Google Scholar
  79. Sharma, A. and Rajamani, V. (2001) Weathering of charnockites and sediment production in the catchment area of the Cauvery River, south India. Sediment. Geol., v.143, pp.169–184.CrossRefGoogle Scholar
  80. Stähle, H.J., Raith, M., Hoernes, S. and Delfs, A. (1987) Element mobility during incipient granulite formation at Kabbaldurga, southern India. Jour. Petrol., v.28, pp.803–834.Google Scholar
  81. Sundaram, R. and Rao, P.S. (1986) Lithostratigraphy of the Upper Cretaceous rocks in the Vridhachalam area, south Arcot district, Tamil Nadu, South India. Geol, Surv. India Spec. Publ., v.11, pp.515–522.Google Scholar
  82. Sundaram, R., Henderson, R.A., Ayyasami, K. and Stilwell, J.D. (2001) A lithostratigraphic revision and palaeoenvironmental assessment of the Cretaceous system exposed in the onshore Cauvery Basin, southern India. Cretaceous Res., v.22, pp.743–762.CrossRefGoogle Scholar
  83. Taylor, S.R. and Mclennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. London, Blackwell Scientific Publications, 312p.Google Scholar
  84. Umazano, A. M., Bellosi, E. S., Visconti, G., Jalfin, A.G. and Melchor, R. N. (2009) Sedimentary record of a Late Cretaceous volcanic arc in central Patagonia: petrography, geochemistry and provenance of fluvial volcaniclastic deposits of the Bajo Barreal Formation, San Jorge Basin, Argentina. Cretaceous Res., v.30, pp.749–766.CrossRefGoogle Scholar
  85. Van De Kamp, P.C. and Leake, B.E. (1995) Petrology and geochemistry of siliciclastic rocks of mixed feldspathic and ophiolitic provenance in the Northern Apennines, Italy. Chem. Geol., v.122, pp.1–20.CrossRefGoogle Scholar
  86. Van Staden, A., Naidoo, T., Zimmermann, U. and Germs, G.J.B. (2006) Provenance analysis of selected clastic rocks in Neoproterozoic to lower Paleozoic successions of southern Africa from the Gariep Belt and the Kango Inlier. South African Jour. Geol., v.109, pp.215–232CrossRefGoogle Scholar
  87. Varga, A., Raucsik, B., Hartyáni, Z. and Szakmány, G. (2007) Paleoweathering conditions of Upper Carboniferous siliciclastic rocks of SW Hungary. Central European Geology, v.50(1), pp.3–18.CrossRefGoogle Scholar
  88. Wanas, H.A. and Abdel-Maguid, N.M. (2006) Petrography and geochemistry of the Cambro-Ordovician Wajid Sandstone, southwest Saudi Arabia: Implications for provenance and tectonic setting. Jour. Asian Earth Sci., v.27(4). pp. 416–429.CrossRefGoogle Scholar
  89. Wani, H. and Mondal, M.E.A. (2010) Petrological and geochemical evidence of the Paleoproterozoic and the Meso-Neoproterozoic sedimentary rocks of the Bastar craton, Indian Peninsula: Implications on paleoweathering and Proterozoic crustal evolution. Jour. Asian Earth Sci., v.38(5), pp.220–232.CrossRefGoogle Scholar
  90. Zimmermann, U. and Spalletti, L. S. (2009) Provenance of the Lower Paleozoic Belcarce Formation (Tandilia System, Buenos Aires Province, Argentina): Implications for paleogeographic reconstructions of SW Gondwana. Sediment. Geol., v.219, pp.7–23.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2010

Authors and Affiliations

  • D. Bakkiaraj
    • 1
  • R. Nagendra
    • 1
  • R. Nagarajan
    • 2
  • John S. Armstrong-Altrin
    • 3
  1. 1.Department of GeologyAnna UniversityChennaiIndia
  2. 2.Department of Applied Geology, School of Engineering and ScienceCurtin UniversityMiri, SarawakMalaysia
  3. 3.Unidad Académica de Geología Marina y Ambiental, Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMéxico D.F., C.P.Mexico

Personalised recommendations