Journal of the Geological Society of India

, Volume 75, Issue 1, pp 302–312 | Cite as

Crustal shortening in convergent orogens: Insights from global positioning system (GPS) measurements in northeast India

  • Malay Mukul
  • Sridevi Jade
  • Anjan Kumar Bhattacharyya
  • Kuntala Bhusan


Deformation in active mountain belts like the Himalaya is manifested over several spatial and temporal scales and collation of information across these scales is crucial to an integrated understanding of the overall deformation process in mountain belts. Computation and integration of geological shortening rates from retrodeformable balanced cross-sections and present-day convergent rates from deforming mountain belts is one way of integrating information across time-scales. The results from GPS measurements carried out in NE India indicate that about 15–20 mm/yr of convergence is being accommodated there. Balanced-cross sections from the NE Himalaya indicate about 350–500 km of shortening south of the South Tibet Detachment (STD). Geothermobarometry suggest that the rocks south of the STD deformed under peak metamorphic conditions at ∼ 22 Ma. This indicates a geological convergence rate of ∼ 16–22 mm/yr which appears to be fairly consistent with the GPS derived convergence rates. Approximately 1.5 to 3.5 mm/yr (∼ 10–20 %) of the total N-S of the present-day convergence in the NE Himalaya is accommodated in the Shillong Plateau. In addition, ∼ 8–9 mm/yr of E-W convergence is observed in the eastern and central parts of the Shillong Plateau relative to the Indo-Burman fold-thrust belt. Balanced cross-sections in the Indo-Burman wedge together with higher resolution GPS measurements are required in the future to build on the first-order results presented here.


GPS Geodesy North East Himalaya Geological Shortening Convergence Active Tectonics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi, Z., Sillard, P. and Boucher, C. (2002) ITRF 2000: A new release of the International Terrestrial Reference frame for earth science applications. Jour. Geophys. Res. Solid Earth, v.107(B10), pp.2214.CrossRefGoogle Scholar
  2. Bendick, R. and Bilham, R. (2001) How perfect is the Himalayan arc? Geology, v.29(9), pp.791–794.CrossRefGoogle Scholar
  3. Bilham, R. and Gaur, V.K. (2000) Geodetic contributions to the study of seismotectonics in India. Curr. Sci., v.79(9), pp.1259–1269.Google Scholar
  4. Boyer, S.E. and Elliott, D. (1982) Thrust systems. Amer. Assoc. Petrol. Geol., v.66, pp.1196–1230.Google Scholar
  5. Cummins, P.R. (2007) The potential for giant tsunamigenic earthquakes in the northern Bay of Bengal. Nature, v.449, pp.75–78.CrossRefGoogle Scholar
  6. Dahlen, F.A. (1990) Critical taper model of fold-and-thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences, v.18, pp.55.CrossRefGoogle Scholar
  7. Decelles, P.G. and Mitra, G. (1995) History of the Sevier orogenic wedge in terms of critical wedge models, north east Utah and south west Wyoming. Geol. Soc. Amer. Bull., v.107, pp.454–462.CrossRefGoogle Scholar
  8. Decelles, P.G., Gehrels, G.E., Quade, J. and Ojha, T. P. (1998) Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics, v.17, pp.741–765.CrossRefGoogle Scholar
  9. Decelles, P.G., Robinson, D.M., Quade, J., Ojha, T.P., Garzione, C.N., Copeland, P. and Upreti, B.N. (2001) Stratigraphy, structure and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics, v.20, pp.487–509.CrossRefGoogle Scholar
  10. Decelles, P.G., Robinson, D.M. and Zandt, G. (2002) Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics, v.21, No.6, pp.1062.CrossRefGoogle Scholar
  11. Hoffmann-Wellenhof, B., Lichtenegger, H. and Collins, J. (1997) GPS Theory and Practice. Springer-Verlag Wein, New York, 389p.Google Scholar
  12. Jade, S., Mukul, M., Parvez, I.A., Ananda, M.B., Kumar, P.D. and Gaur, V.K. (2002) Estimates of Coseismic Displacement and Post-Seismic Deformation using Global Positioning System Geodesy for the Bhuj Earthquake of 26 January. Curr. Sci., v.82, pp.748–752.Google Scholar
  13. Jade, S., Mukul, M., Parvez, I.A., Ananda, M.B., Kumar, P.D., Gaur, V.K., Bendick, R., Bilham, R., Wallace, K., Abbasi, I.A., Khan, M.A. and Ulhadi, S. (2003) Preseismic, coseismic and post-seismic displacements associated with the Bhuj 2001 Earthquake derived from Recent and Historic Geodetic Data. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.112, No.3, pp.1–14.Google Scholar
  14. Jade, S., Mukul, M., Bhattacharyya, A.K., Vijayan, M.S.M., Saigeetha, J., Kumar, Ashok., Tiwari, R.P., Kumar, Arun, Kalita, S., Sahu, S.C., Krishna, A.P., Gupta, S.S., Murthy, M.V.R.L. and Gaur, V.K. (2007) Estimates of interseismic deformation in Northeast India from GPS Measurements. Earth Planet. Sci. Lett., v.263, pp.221–234.CrossRefGoogle Scholar
  15. Klootwijk, C.T., Conaghan, P. J. and Powell, C. McA. (1985) The Himalayan arc: large scale continental subduction, oroclinal bending and back-arc spreading. Earth Planet. Sci. Lett., v.75, pp.167–183.CrossRefGoogle Scholar
  16. King, R.W. and Bock, Y. (2000) Documentation of the GAMIT GPS analysis software, Massachusetts Institute of Technology, Cambridge.Google Scholar
  17. Macedo, J. and Marshak, S. (1999) The geometry of fold-thrust belt salients. Geol. Soc. Amer. Bull., v.111, pp.1808–1822.CrossRefGoogle Scholar
  18. Mccaffrey, R. and Nabelek, J. (1998) Role of oblique convergence in the active deformation of the Himalayas and southern Tibetan plateau. Geology, v.26, pp.691–694.CrossRefGoogle Scholar
  19. McNaught, M.A. and Mitra, G. (1993) A kinematic model for the origin of footwall synclines. Jour. Struct. Geol., v.15, pp.805–808.CrossRefGoogle Scholar
  20. McNaught, M. and Mitra, G. (1996) The use of finite strain data in constructing a retrodeformable cross-section of the Meade thrust sheet, southeastern Idaho. Jour. Struct. Geol., v.18, pp.573–583.CrossRefGoogle Scholar
  21. Mcquarrie, N., Robinson, D., Long, S., Tobgay, T., Grujic, D., Gehrels, G. and Ducea, M. (2008) Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system. Earth Planet. Sci. Lett., v.272, pp.105–117.CrossRefGoogle Scholar
  22. Mitra, G. (1994) Strain variation in thrust sheets of the Sevier fold-and-thrust belt, Idaho-Utah-Wyoming: Implications for section restoration and wedge taper evolution. Jour. Struct. Geol., v.16, pp.585–602.CrossRefGoogle Scholar
  23. Mitra, G. (1997) Evolution of salients in a fold-and-thrust belt: the effects of sedimentary basin geometry, strain distribution and critical taper. In: S. Sengupta (Eds.), Evolution of Geologic Structures from Macro- to Micro-scales. Chapman and Hall, London, pp.59–90.Google Scholar
  24. Mitra, G., Bhattacharyya, K. and Mukul, M. (2010) The Lesser Himalayan Duplex in Sikkim: Implications for variations in Himalayan shortening. Jour. Geol. Soc. India, v.75, pp.289–301.CrossRefGoogle Scholar
  25. Mookerjee, M. and Mitra, G. (2008) Kinematics-Based Mathematical Model for Deforming Thrust Wedges. Mathematical Geosciences, v.40(3), pp.249–275.CrossRefGoogle Scholar
  26. Molnar, P. and Lyon-Caen, H. (1989) Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophys. Jour. Internat., v.99, pp.123–153.CrossRefGoogle Scholar
  27. Mukul, M. (1998) A geostatistical approach to the quantification of finite strain variation in penetratively deformed thrust sheets: an example from the Sheeprock thrust sheet, Utah. Jour. Struct. Geol., v.20(4), pp.371–384.CrossRefGoogle Scholar
  28. Mukul, M. (1999) Strain variation in fold-and-thrust belts: Implications for construction of retrodeformable models. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.108, No.3, pp.207–221.Google Scholar
  29. Mukul, M. (2000) The Geometry and Kinematics of the Main Boundary Thrust and related Neotectonics in the Darjiling Himalayan Fold-and-thrust belt, West Bengal. Jour. Struct. Geol., v.22 (9), pp.1261–1283.CrossRefGoogle Scholar
  30. Mukul, M. (2005) Continental deformation and Global Positioning System based Geodesy. Himalayan Geol., v.26(1), pp.193–198.Google Scholar
  31. Mukul, M. and Mitra, G. (1998) Finite strain and Strain Variation Analysis in the Sheeprock Thrust Sheet: An internal Thrust Sheet in the Provo salient of the Sevier Fold-and-Thrust Belt, Central Utah. Jour. Struct. Geol., v.20(4), pp.385–405.CrossRefGoogle Scholar
  32. Mukul, M., Jaiswal, M. and Singhvi, A.K. (2007) Timing of recent out-of-sequence active deformation in the frontal Himalayan wedge: Insights from the Darjiling sub-Himalaya, India. Geology, v.35(11), pp.999–1002.CrossRefGoogle Scholar
  33. Mukul, M., Jade, S. and Matin, A. (2009) Active Deformation in the Darjiling-Sikkim Himalaya based on 2000–2004 Geodetic Global Positioning System Measurements. In: P. Ghosh and S. Gangopadhyay (Eds.), Indian Statistical Institute Platinum Jubilee Volumes, Numerical Methods and Models in Earth Science, New India Publishing Agency, New Delhi, pp.1–28.Google Scholar
  34. Mukul, M., Roy, D., Satpathy, S. and Anil Kumar, V. (2004) Bootstrapped Spatial Statistics: A More Robust Approach to the Analysis of Finite Strain Data. Jour. Struct. Geol., v.26(3), pp.595–600.CrossRefGoogle Scholar
  35. Nandy, D. R. (2001) Geodynamics of Northeastern India and the Adjoining Region. ACB publications, Lake Town, Calcutta, 209p.Google Scholar
  36. Nelson, K.D. and Twenty Six Others (1996) Partially Molten Middle Crust Beneath Southern Tibet: Synthesis of Project INDEPTH Results. Science, v.274, pp.1684–1688.CrossRefGoogle Scholar
  37. Ni, J. and Barazangi, M. (1984) Seismotectonics of the Himalayan Collision Zone: Geometry of the underthrusting Indian plate beneath the Himalaya. Jour. Geophys. Res., v.89(B2), pp.1147–1163.CrossRefGoogle Scholar
  38. Satyabala, S.P. (1998) Subduction in the Indo-Burma region: Is it still active? Geophys. Res. Lett., v.25, pp.3189–3192.CrossRefGoogle Scholar
  39. Srivastava, P. and Mitra, G. (1994) Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold-and-thrust belt. Tectonics, v.13, pp.89–109.CrossRefGoogle Scholar
  40. Vigny, C., Socquet, A., Rangin, C., Chamot-Rooke, N., Pubellier, M., Boudin, M.-N., Bertrand, G. and Becker, M. (2003) Present-day crustal deformation around Sagaing fault, Myanmar. Jour. Geophys. Res., v.108(B11), pp.2533, doi:10.1029/2002JB001999.CrossRefGoogle Scholar
  41. Wang, Q., Zhang, P-Z., Freymuller, J.T., Bilham, R., Larson, K.M., Lai, X., You, X., Niu, Z., Wu, J., Li, Y., Liu, J., Yang, Z. and Chen, Q. (2001) Present-Day Crustal Deformation in China constrained by Global Positioning System Measurements. Science, v.295, pp.574–577.CrossRefGoogle Scholar
  42. Wu, S. (1995) Fractal strain distribution and its implications for cross-section balancing. Jour. Struct. Geol., v.15, pp.1509–1512.Google Scholar

Copyright information

© Geological Society of India 2010

Authors and Affiliations

  • Malay Mukul
    • 1
    • 4
  • Sridevi Jade
    • 1
  • Anjan Kumar Bhattacharyya
    • 2
  • Kuntala Bhusan
    • 3
  1. 1.CSIR Centre for Mathematical Modelling and Computer SimulationBangaloreIndia
  2. 2.Department of PhysicsTezpur UniversityTezpurIndia
  3. 3.North East Space Application CentreUmiamIndia
  4. 4.Department of Earth SciencesIndian Institute of Technology-BombayMumbaiIndia

Personalised recommendations