Journal of the Geological Society of India

, Volume 75, Issue 1, pp 267–277 | Cite as

Fabric transpositions in granite plutons — An insight from non-scaled analogue modelling

  • Zuzana Kratinová
  • Matej Machek
  • Vladimír Kusbach


Investigations on a set of experimental models of highly viscous intrusions were carried out in order to study the internal strain pattern during vertical ascent and emplacement of granite intrusions. The strain pattern was determined by means of anisotropy of magnetic susceptibility (AMS) resulting from the orientation of magnetite particles in a liquid plaster medium. The modelled intrusions show distinct fabrics reflecting the flow of a rheologically complex, non-Newtonian material. During the vertical growth of the intrusion, constrictional vertical fabrics are transposed into flattening fabrics, and along with the development of low-intensity fabric domains are passively transported upwards. Vertical growth takes place along subvertical thrust shear zones that satisfactorily explain the discordant magmatic fabrics in granites along intrusion sides. The resulting complex fabric patterns suggest that the vertical movement of material in ascending intrusions is accommodated by various flow mechanisms operating simultaneously.


Analogue modelling AMS Magmatic fabrics Granite intrusions Rheology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archanjo, C., Trindade, R., Bouchez, J.-L. and Ernesto, M. (2002) Granite fabrics and regional-scale strain partitioning in the Seridó belt (Borborema Province, NE Brazil). Tectonics, v.21, pp.1–13.CrossRefGoogle Scholar
  2. Archanjo, C., Hollanda, M.H., Rodrigues, S., Neves, B. and Armstrong, R. (2008) Fabrics of pre- and syntectonic granite plutons and chronology of shear zones in the Eastern Borborema Province, NE Brazil. Jour. Struct. Geol., v.30(3), pp.310–326.CrossRefGoogle Scholar
  3. Bagdassarov, N. and Pinkerton, H. (2004) Transient phenomena in vesicular lava flows based on laboratory experiments with analogue materials. Jour.Volcanol. Geoth. Res., v.132, pp.115–136.CrossRefGoogle Scholar
  4. Benn, K., Ham, N.M., Pignotta, G.S. and Bleeker, W. (1998) Emplacement and deformation of granites during transpression: magnetic fabrics of the Archean Sparrow pluton, Slave Province, Canada. Jour. Struct. Geol., v.20, pp.1247–1259.CrossRefGoogle Scholar
  5. Benn, K., Paterson, S.R., Lund, S.P., Pignotta, G.S. and Kruse, S. (2001) Magmatic Fabrics in Batholiths as Markers of Regional Strains and Plate Kinematics: Example of the Cretaceous Mt. Stuart Batholith. Phys. Earth Planet. In: Part A: Solid Earth and Geodesy (A), v.26, pp.343–354.CrossRefGoogle Scholar
  6. Bonini, M., Sokoutis, D., Mulugeta, G., Boccaletti, M., Corti, G., Innocenti, F., Manetti, P. and Mazzarini, F. (2001) Dynamics of magma emplacement in centrifuge models of continental extension with implications for flank volcanism. Tectonics, v.20, pp.1053–1065.CrossRefGoogle Scholar
  7. Bouchez, J.L. (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: J.L. Bouchez, D.W.H. Hutton and W.E. Stephens (Eds.), Granite: From Segregation of Melt to Emplacement Fabrics, Kluwer Acad. Publ., Dordrecht, The Netherlands, pp.95–112.Google Scholar
  8. Bouchez, J.L., Gleizes, G., Djouadi, T. and Rochette, P. (1990) Microstructure and magnetic susceptibility applied to emplacement kinematics of granites: the example of the Foix pluton (French Pyrenees). Tectonophysics, v.184, pp.157–171.CrossRefGoogle Scholar
  9. Bouillin, J.P., Bouchez, J.L. and Lespinasse, P. (1993) Granite emplacement in an extensional setting — an AMS study of the magmatic structures of Monte-Capanne (Elba, Italy). Earth Planet. Sci. Lett., v.118, pp.263–279.CrossRefGoogle Scholar
  10. Buisson, C. and Merle, O. (2002) Experiments on internal strain in lava dome cross sections. Bull. Volcanol., v.64, pp.363–371.CrossRefGoogle Scholar
  11. Castro, A. (1987) On granitoid emplacement and related structures — a review. Geol. Rundsch., v.76, pp.101–124.CrossRefGoogle Scholar
  12. Collins, W.J. and Sawyer, E.W. (1996) Pervasive granitoid magma transfer through the lower-middle crust during non-coaxial compressional deformation. Jour. Metam. Geol., v.14, pp.565–579.CrossRefGoogle Scholar
  13. Dietl, C. and Koyi, H. A. (2002) Emplacement of nested diapirs: Results of centrifuge modelling. Jour. Virtual Explorer, v.6, pp.81–88.Google Scholar
  14. Dietl, C. and Koyi, H.A. (2008) Formation of tabular plutons — results and implications of centrifuge modelling. Jour. Geosciences, v.53, pp.253–261.CrossRefGoogle Scholar
  15. Dunlop, D. J. (2002) Theory and application of the Day plot (Mrs/M-s versus H-cr/H-c) 2. Application to data for rocks, sediments, and soils. Jour. Geophys. Res., v.107, B3.Google Scholar
  16. Esmaeily, D., Bouchez, J.L. and Siqueira, R. (2007) Magnetic fabrics and microstructures of the Jurassic Shah-Kuh granite pluton (Lut Block, Eastern Iran) and geodynamic inference. Tectonophysics, v.439, pp.149–170.CrossRefGoogle Scholar
  17. Fernandez, A. and Laporte, D. (1991) Significance of low symmetry fabrics in magmatic rocks. Jour. Struct. Geol., v.13, pp.337–347.CrossRefGoogle Scholar
  18. Grout, F. F. (1945) Scale models of structures related to batholiths. Am. Jour. Sci., v.243A, pp.260–284.Google Scholar
  19. Hrouda, F. (1994) A Technique for the Measurement of Thermal-Changes of Magnetic-Susceptibility of Weakly Magnetic Rocks by the Cs-2 Apparatus and Kly-2 Kappabridge. Geophys. Jour. Int., v.118, pp.604–612.CrossRefGoogle Scholar
  20. Hrouda, F., Jelínek, V. and Hrušková, L. (1990) A package of programs for statistical evaluation of magnetic data using IBM PC computers. AGU 1990 fall meeting. Eos, Trans., Amer. Geophys. Union, v.71, pp.1289.Google Scholar
  21. Jelínek, V. (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Stud. Geophys. Geod., v.22, pp.50–62.CrossRefGoogle Scholar
  22. Jelínek, V. (1981) Characterization of magnetic fabric of rocks. Tectonophysics, v.79, pp.63–67.CrossRefGoogle Scholar
  23. Jelínek, V. and Pokorny, J. (1997) Some new concepts in technology of transformer bridges for measuring susceptibility anisotropy of rocks. Phys. Chem. Earth, v.22, pp.179–181.CrossRefGoogle Scholar
  24. Kratinová, Z., Závada, P., Hrouda, F. and Schulmann, K. (2006) Non-scaled analogue modelling of AMS development during viscous flow: A simulation on diapir-like structures. Tectonophysics, v.418, pp.51–61.CrossRefGoogle Scholar
  25. Kratinová, Z., Schulmann, K., Edel, J. B., Ježek, J. and Schaltegger, U. (2007) Model of successive granite sheet emplacement in transtensional setting: Integrated microstructural and anisotropy of magnetic susceptibility study. Tectonics, v.26, TC6003, doi:10.1029/2006TC002035.CrossRefGoogle Scholar
  26. Leitch, A.M. and Weinberg, R.F. (2002) Modelling granite migration by mesoscale pervasive flow. Earth Planet. Sci. Lett., v.200, pp.131–146.CrossRefGoogle Scholar
  27. Lexa, O., Štípská, P., Schulmann, K., Baratoux, L. and Kröner, A. (2005) Contrasting textural record of two distinct metamorphic events of similar P-T conditions and different durations. Jour. Metam. Geol., v.23, pp.649–666.CrossRefGoogle Scholar
  28. Majumder, S. and Mamtani, M. A. (2009) Magnetic fabric in the Malanjkhand Granite (Central India)-Implications for regional tectonics and Proterozoic Suturing of the Indian shield. Phys. Earth Planet. Inter., v.172, pp.310–323.CrossRefGoogle Scholar
  29. Nagata, T. (1961) Rock Magnetism, Maruzen, Tokyo.Google Scholar
  30. Parry, M., Štípská, P., Schulmann, K., Hrouda, F., Ježek, J. and Kröner, A. (1997) Tonalite sill emplacement at an oblique plate boundary: northeastern margin of the Bohemian Massif. Tectonophysics, v.280, pp.61–81.CrossRefGoogle Scholar
  31. Paterson, S.R., Fowler, T.K., Schmidt, K.L., Yoshinobu, A.S., Yuan, E.S. and Miller, R.B. (1998) Interpreting magmatic fabric patterns in plutons. Lithos, v.44, pp.53–82.CrossRefGoogle Scholar
  32. Paterson, S.R. and Vernon, R.H. (1995) Bursting the bubble of ballooning plutons: A return to nested diapirs emplaced by multiple processes. GSA Bulletin, v.107, pp.1356–1380.CrossRefGoogle Scholar
  33. Petford, N. (1996) Dykes and diapirs? T. Roy. Soc. Edin-Earth, v.87, pp.105–114.Google Scholar
  34. Pitcher, W.S. (1979) Nature, ascent and emplacement of granitic magmas. Jour. Geol. Soc. London, v.136, pp.627–662.CrossRefGoogle Scholar
  35. Ramberg, H. (1981) Gravity, deformation and the Earth’s crust. Academic Press, New York.Google Scholar
  36. Ramsay, J.G. (1989) Emplacement kinematics of a granite diapir; the Chindamora Batholith, Zimbabwe. Jour. Struct. Geol., v.11, pp.191–209.CrossRefGoogle Scholar
  37. Raposo, M. I. B., Carmo, M. and Gastal, P. (2009) Emplacement mechanism of the main granite pluton of the Lavras do Sul intrusive complex, South Brazil, determined by magnetic anisotropies. Tectonophysics, v.466, pp.18–31.CrossRefGoogle Scholar
  38. Román-Berdiel, T. (1999) Geometry of granite emplacement in the upper crust: contributions of analogue modelling. Geol. Soc. London Spec. Publ., v.168, pp.77–94.CrossRefGoogle Scholar
  39. Rochette, P., Aubourg, C. and Perrin, M. (1999) Is this magnetic fabric normal? A review and case studies in volcanic formations. Tectonophysics, v.307, pp.219–234.CrossRefGoogle Scholar
  40. Simakin, A. and Talbot, C. (2001) Tectonic pumping of pervasive granitic melts. Tectonophysics, v.332, pp.387–402.CrossRefGoogle Scholar
  41. Schulmann, K., Ježek, J. and Venera, Z. (1997) Perpendicular linear fabrics in granite: markers of combined simple shear and pure shear flows? In: J.L. Bouchez, D.W.H. Hutton and W.E. Stephens (Eds.), Granite: From Segregation of Melt to Emplacement Fabrics, Kluwer Acad. Publ., Dordrecht, The Netherlands, pp.159–76.Google Scholar
  42. Schwerdtner, W.M. and Troeng, B. (1978) Strain distributon within arcuate diapiric ridges of silicon putty. Tectonophysics, v.50, pp.13–28.CrossRefGoogle Scholar
  43. Tarling, D.H. and Hrouda, F. (1993) The Magnetic Anisotropy of Rocks. Chapman and Hall, London, 232p.Google Scholar
  44. Vernon, R.H., Johnson, S.E. and Melis, E.A. (2004) Emplacement-related microstructures in the margin of a deformed pluton: the San Jose tonalite, Baja California, Mexico. Jour. Struct. Geol, v.26, pp.1867–1884.CrossRefGoogle Scholar
  45. Vernon, R.H. and Paterson, S.R. (2008) How late are K-feldspar megacrysts in granites? Lithos, v.104, pp.327–336.CrossRefGoogle Scholar
  46. Weinberg, R.F. (1999) Mesoscale pervasive melt migration alternative to dyking. Lithos, v.46, pp.393–410.CrossRefGoogle Scholar
  47. Weinberg, R.F. and Podladchikov, Y. (1994) Diapiric ascent of magmas through power law crust and mantle. Jour. Geophys. Res., v.99(B5), pp.9543–9559.CrossRefGoogle Scholar
  48. Závada, P., Kratinová, Z., Kusbach, V. and Schulmann, K. (2008) Internal fabric development in complex lava domes. Tectonophysics, v.466, pp.101–113.CrossRefGoogle Scholar
  49. Žák, J., Schulmann, K. and Hrouda, F. (2005) Multiple magmatic fabrics in the Sazava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. Jour. Struct. Geol., v.27, pp.805–22.CrossRefGoogle Scholar
  50. Žák, J., Verner, K. and Tycová, P. (2008) Multiple magmatic fabrics in plutons: an overlooked tool for exploring interactions between magmatic processes and regional deformation? Geol. Mag., v.145, pp.537–551.Google Scholar

Copyright information

© Geological Society of India 2010

Authors and Affiliations

  • Zuzana Kratinová
    • 1
    • 2
  • Matej Machek
    • 1
  • Vladimír Kusbach
    • 3
    • 4
  1. 1.Geophysical InstituteCzech Academy of SciencesPraha 4Czech Republic
  2. 2.Universidade Lisboa, CGUL/IDLLisboaPortugal
  3. 3.Institute of Petrology and Structural GeologyCharles UniversityPragueCzech Republic
  4. 4.IPG, L’Ecole et Observatoire des Sciences de la TerreUniversité de StrasbourgStrasbourgFrance

Personalised recommendations