Journal of the Geological Society of India

, Volume 75, Issue 1, pp 254–266 | Cite as

Modelling relationship between bulk susceptibility and AMS in rocks consisting of two magnetic fractions represented by ferromagnetic and paramagnetic minerals — Implications for understanding magnetic fabrics in deformed rocks

  • František Hrouda


Measurement of Anisotropy of Magnetic Susceptibility (AMS) has become an important tool for Structural Geological analysis in the past few decades. In the past, AMS data have been used for petrofabric analysis of deformed rocks as well as for gauging strain. However, the AMS of some rocks can be carried by both ferromagnetic and paramagnetic minerals. Separating effects of these mineral groups on the rock’s AMS is difficult because of expensive and commercially less available instrumentation. On the other hand, instrumentation is available in most rock magnetic and palaeomagnetic laboratories for resolving bulk susceptibility into ferromagnetic and paramagnetic components. Mathematical modelling was made of the relationship between bulk susceptibility and AMS. If the contribution of the ferromagnetic or the paramagnetic fraction to the rock susceptibility is dominant (let us say higher than 80%), the resultant AMS is relatively near to the AMS of the dominating fraction in all aspects, the degree of AMS, shape parameter and orientation of principal susceptibilities. In the interpretation of the AMS of rocks with dominating one fraction, the resolution of the AMS into paramagnetic and ferromagnetic components is not necessary, the resolution of bulk susceptibility into components is sufficient that can be made using the instrumentation available in most rock magnetic and palaeomagnetic laboratories.


Magnetic anisotropy Bulk susceptibility Ferro- and paramagnetic minerals Mathematical modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archanjo, C.J., Launeau, P. and Bouchez, J.L. (1995) Magnetic fabric vs. magnetite and biotite shape fabrics of the magnetitebearing granite pluton of Gamelerias (Northeast Brazil). Phys. Earth Planet. Inter., v.89, pp.63–75.CrossRefGoogle Scholar
  2. Aydin, A., Ferré, E.C. and Aslan, Z. (2007) The magnetic susceptibility of granitic rocks as a proxy for geochemical differentiation: Example from the Saruhan granitoids, NE Turkey. Tectonophysics, v.441, pp.85–95.CrossRefGoogle Scholar
  3. Bleil, U. and Petersen, N. (1982). Magnetic properties of rocks. In: G. Angenheister (editor), Landolt-Börnstein Numerical Data and Functional Relationships in Science and technology. Springer-Verlag Berlin, pp.366–432.Google Scholar
  4. Borradaile, G.J. and Alford, C. (1987) Relationship between magnetic susceptibility and strain in laboratory experiments. Tectonophysics, v.133, pp.121–135.CrossRefGoogle Scholar
  5. Borradaile, G., Keeler, W., Alford, C. and Sarvas, P. (1987) Anisotropy of magnetic susceptibility of some metamorphic minerals. Phys. Earth Planet. Inter., v.48, pp.161–166.CrossRefGoogle Scholar
  6. Borradaile, G.J. and Werner, T. (1994) Magnetic anisotropy of some phyllosilicates. Tectonophysics, v.235, pp.223–248.CrossRefGoogle Scholar
  7. Bouchez, J.-L. (2000) Anisotropie de susceptibilité magnétique et fabrique des granites. C.R. Acad. Sci. Paris, Sciences de la Terre et des planets, v.330, pp.1–14.Google Scholar
  8. Cifelli, F., Mattei, M., Chadima, M., Lenser, S. and Hirt, A.M. (2009). The magnetic fabric in “undeformed clays”: AMS and neutron texture analyses from the Rif Chain (Morocco). Tectonophysics, v.466, pp.79–88.CrossRefGoogle Scholar
  9. Collinson, D.W. (1983) Methods in rock magnetism and palaeomagnetism. Techniques and instrumentation. Chapman & Hall, London-New York.Google Scholar
  10. Dunlop, D.J. and Özdemir, Ö. (1997) Rock Magnetism. Fundamentals and frontiers. Cambridge University Press, 573p.Google Scholar
  11. Friedrich, D. (1995) Gefügeuntersuchungen an Amfiboliten der Böhmische Masse unter besonderer Berücksichtigung der Anisotropie der magnetischen Suszeptibilität. Geotektonische Forschungen, v.82, pp.1–118.Google Scholar
  12. Greiling, R.O., Grimmer, J.C., Dewall, H. and Bjõrk, L. (2007) Mesoproterozoic dyke swarms in foreland and nappes of the central Scandinavian Caledonides: structure, magnetic fabric, and geochemistry. Geol. Mag., v.144, pp.525–546.CrossRefGoogle Scholar
  13. Hejtman, B. (1957) Systematic petrography of igneous rocks (in Czech). NÈSAV Praha, 363p.Google Scholar
  14. Hejtman, B. (1962). Petrography of metamorphic rocks (in Czech). NČSAV Praha, 539p.Google Scholar
  15. Henry, B. (1983) Interpretation quantitative de l’anisotropie de susceptibilité magnétique. Tectonophysics, v.91, pp.165–177.CrossRefGoogle Scholar
  16. Henry, B. and Daly, L. (1983) From qualitative to quantitative magnetic anisotropy analysis: the prospect of finite strain calibration. Tectonophysics, v.98, pp.327–336.CrossRefGoogle Scholar
  17. Hrouda, F. (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surv., v.5, pp.37–82.CrossRefGoogle Scholar
  18. Hrouda, F. (1986) The effect of quartz on the magnetic anisotropy of quartzite. Studia geophys. geod., v.30, pp.39–45.CrossRefGoogle Scholar
  19. Hrouda, F. (1993) Theoretical models of magnetic anisotropy to strain relationship revisited. Phys. Earth Planet. Inter., v.77, pp.237–249.CrossRefGoogle Scholar
  20. Hrouda, F. (1994) A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophys. Jour. Int., v.118, pp.604–612.CrossRefGoogle Scholar
  21. Hrouda, F. (2004) Problems in interpreting AMS parameters in diamagnetic rocks, 49–59. In: F. Martín-Hernández, C.M. Lüneburg, C. Aubourg and M. Jackson (Eds) Magnetic Fabric: Methods and Applications. Geol. Soc. London, Spec. Publ., 238p.Google Scholar
  22. Hrouda, F. (2007). Magnetic susceptibility, anisotropy. In: D. Gubbins and E. Herrero-Bervera (Eds.), Encyclopedia of Geomagnetism and Paleomagnetism. Springer, pp.546–560.Google Scholar
  23. Hrouda, F. and Kahan, Š. (1991) The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mts. (N Slovakia). Jour. Struct. Geol., v.13, pp.431–442.CrossRefGoogle Scholar
  24. Hrouda, F., Jelínek, V. and Zapletal, K. (1997). Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature-variation measurement. Geophys. Jour. Int., v.129, pp.715–719.CrossRefGoogle Scholar
  25. Hrouda, F., Táborská, Š., Schulmann, K., Ježek, J. and Dolejš, D. (1999). Magnetic fabric and rheology of co-mingled magmas in the Nasavrky Plutonic Complex (E Bohemia): implications for intrusive strain regime and emplacement mechanism. Tectonophysics, v.307, pp.93–111.CrossRefGoogle Scholar
  26. Jelínek, V. (1981) Characterization of magnetic fabric of rocks. Tectonophysics, v.79, pp.T63–T67.CrossRefGoogle Scholar
  27. Ježek, J. and Hrouda, F. (2000) The Relationship Between the Lisle Orientation Tensor and the Susceptibility tensor. Phys. Chem. Earth (A), v.25, pp.469–474.CrossRefGoogle Scholar
  28. Ježek, J. and Hrouda, F. (2007) SUSIE: A program for inverse strain estimation from magnetic susceptibility. Computers & Geosciences, v.33, pp.749–759.CrossRefGoogle Scholar
  29. Launeau, P. and Cruden, A.R. (1998) Magmatic fabric acquisition mechanisms in a syenite: results of a combined anisotropy of magnetic susceptibility and image analysis study. Jour. Geoph. Res., v.103, pp.5067–5089.CrossRefGoogle Scholar
  30. Martin-Hernández, F. and Ferré, E.C. (2007) Separation of paramagnetic and ferromagnetic anisotropies: A review. Jour. Geophys. Res., v.112, B03105, doi: 10.1029/2006JB004340.CrossRefGoogle Scholar
  31. Martín-Hernández, F. and Hirt, A.M. (2003) The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals. Tectonophysics, v.367, pp.13–28.CrossRefGoogle Scholar
  32. Mukherji, A., Chaudhuri, A.K. and Mamtani, M.A. (2004) Regional scale strain variations in the Banded Iron Formations of eastern India: results from anisotropy of magnetic susceptibility studies. Jour. Struct. Geol., v. 26, pp. 2175–2189.CrossRefGoogle Scholar
  33. Nagata, T. (1961) Rock magnetism. Maruzen Tokyo.Google Scholar
  34. Nye, J.F. (1957) Physical properties of crystals. Clarendon Press, Oxford.Google Scholar
  35. Petránek., J. (1963) Petrography of sedimentary rocks (in Czech). NČSAV Praha, 718p.Google Scholar
  36. Rochette, P. (1988) Relations entre deformation et metamorphisme alpin dans les schistes noirs helvetiques: l’apport de la fabrique magnetique. Geodin. Acta, v.2, pp.17–24.Google Scholar
  37. Rochette, P., Jackson, J. and Aubourg, C. (1992) Rock magnetism and the interpretation of anisotrophy of magnetic susceptibility. Reviews of Geophysics, v.30, pp.209–226.CrossRefGoogle Scholar
  38. Rochette, P., Scaillet, B., Guillot, S., Le Fort, P. and Pecher, A. (1994). Magnetic properties of the High Himalayan leucogranites: structural implications. Earth Planet. Sci. Lett., v.126, pp.217–234.CrossRefGoogle Scholar
  39. Scheidegger, A.E. (1965) On the statistics of the orientation of bedding planes, grain axes and similar sedimentological data. U.S. Geol. Surv. Prof. Paper, 525-C, pp.164–167.Google Scholar
  40. Sen, K. and Mamtani, M.A. (2006) Magnetic fabric, shape preferred orientation and regional strain in granitic rocks. Jour. Struct. Geol., v.28, pp.1870–1882.CrossRefGoogle Scholar
  41. Sen, K., Majumder, S. and Mamtani, M.A. (2005) Degree of magnetic anisotropy as a strain intensity gauge in ferromagnetic granites. Jour. Geol. Soc. London, v.162, pp.583–586.CrossRefGoogle Scholar
  42. Syono, Y. (1960) Magnetic susceptibility of some rock forming silicate minerals such as amphiboles, biotites, cordierites and garnets. Jour. Geomagn. Geoelectr., v.11. pp.85–93.Google Scholar
  43. Uyeda S., Fuller M.D., Belshé J.C. and Girdler, R.W. (1963) Anisotropy of magnetic susceptibility of rocks and minerals. Jour. Geophys. Res., v.68, pp.279–292.CrossRefGoogle Scholar
  44. Zapletal., K. (1985) Mean susceptibility and magnetic anisotropy of biotite (in Czech). In: F. Hrouda, V. Jelínek and K. Zapletal (Eds.), The use of magnetic properties of rocks in ore and oil geophysics. Unpublished report of Geofyzika, n.p., Brno, pp.54–75.Google Scholar
  45. Zapletal, K. (1990) Low-field susceptibility anisotropy of some biotite crystals. Phys. Earth Planet. Inter., v.63, pp.85–97.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2010

Authors and Affiliations

  1. 1.AGICO Inc.BrnoCzech Republic
  2. 2.Institute of Petrology and Structural GeologyCharles UniversityPrahaCzech Republic

Personalised recommendations