Advertisement

Journal of the Geological Society of India

, Volume 75, Issue 1, pp 239–253 | Cite as

A record of ductile syn-intrusional fabrics to post solidification cataclasis: Magnetic fabric analysis of neoproterozoic Mirpur and Mt. Abu Granitoids, NW India

  • Helga de WallEmail author
  • Stefan Schöbel
  • Manoj K. Pandit
  • Kamal K. Sharma
  • J. Just
Article

Abstract

The Mirpur granite body represents a relatively small (10 km2) pluton intruded along the northern margin of the adjacent Mt. Abu batholith (∼125 km2) in NW India. It is a visibly undeformed alkali feldspar rich pink granite; in contrast, the Mt. Abu is a composite granitoid body and variably deformed. Both are intruded by rhyolitic dykes and the terminal magmatic events in both the cases are mafic dykes. The AMS (Anisotropy of Magnetic Susceptibility) data identify the Mt. Abu with SE-dipping foliations and subvertical lineations as a single structural domain while the Mirpur granite body shows two domains characterized by predominantly E — W trend of magnetic foliation in the eastern part (domain I) and N — S orientations in the western part (domain II). The domain I shows magmatic fabrics, typical for the peraluminous granites of Malani Igneous Suite (MIS). Change in fabric orientation in the domain II has resulted from cataclasis wherein the samples show destruction of the original E — W fabric and complete transposition by N — S trends. The foliations in the Mt. Abu granites have been related to SE orientation of maximum horizontal stress. The same maximum stress direction can be inferred from dyke orientation in the Mirpur granite, which is interpreted as continuation of the tectonic imprint in this region during emplacement of both the granites. Age of the cataclastic overprint with a predominant N — S orientation is not yet constrained but corresponds with the trend of the nearby Sindreth basin within the Malani Igneous Suite. The Neoproterozoic tectonic scenario for the region has been interpreted in terms of an ongoing crustal convergence and granitic magma emplacement against the back stop offered by the rigid Delhi Fold Belt.

Keywords

Anisotropy of Magnetic Susceptibility Cataclasis Mirpur granite Mt. Abu NW India 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arzi, A.A. (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics, v.44, pp.173–184.CrossRefGoogle Scholar
  2. Ashwal, L.D., Demaiffe, D. and Torsvik, T.H. (2002) Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles: evidence for the case of an Andean-type arc origin. Jour. Petrol., v.43, pp.45–83.CrossRefGoogle Scholar
  3. Benn, K., Paterson, S.R., Lund, S.P., Pignotta, G.S. and Kuse, S. (2001). Magmatic fabrics in batholiths as markers of regional strains and plate kinematics: example of the Cretaceous Mt. Stuart batholith. Physics and Chemistry of the Earth, Part A. Solid Earth and Geodesy, v.26, pp.343–354.CrossRefGoogle Scholar
  4. Bhushan, S.K. (2000) Malani rhyolites — a review. Gondwana Res., v.3, pp.65–77.CrossRefGoogle Scholar
  5. Bhushan, S.K. (1984) Classification of Malani Igneous Suite. Geol. Surv. India Spec. Publ., v.12, pp.199–205.Google Scholar
  6. Borradaile, G.J. and Henry, B. (1997) Tectonic application of magnetic susceptibility and its anisotropy. Earth Sci. Rev., v.42, pp.49–93.CrossRefGoogle Scholar
  7. Bouchez, J.L. (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: J.L. Bouchez, D.H.W. Hutton, and W.E. Stephens (Eds.), Granite: from segregation of melt to emplacement fabrics. Petrol. Struc. Geol., v.8, pp.95–112.Google Scholar
  8. Bouchez, J.L., Gleizes, G., Djouadi, T. and Rochette, P. (1990) Microstructure and magnetic susceptibility applied to emplacement kinematics of granites: the example of the foix pluton (French pyrenees), Tectonophysics, v.184, pp.157–171.CrossRefGoogle Scholar
  9. Bouillin, J.P., Bouchez, J.L., Lespinasse, P. and Pêcher, A. (1993) Granite emplacement in an extensional setting: an AMS study of the magmatic structures of Monte Capanne (Elba, Italy) Earth Planet. Sci. Lett., v.118, pp.263–279.Google Scholar
  10. Cañón-Tapia, E. (1996) Single-grain versus distribution anisotropy: a simple three-dimensional model. Phys. Earth Planet. Inter., v.94, pp.149–158.CrossRefGoogle Scholar
  11. Chadima, M., Hansen, A., Hirt, A.M., Hrouda, F. and Siemes, H. (2004) Phyllosilicate preferred orientation as a control of magnetic fabric: evidence from neutron texture geometry and low and high-field magnetic anisotropy (SE Rhenohercynian Zone of Bohemian Massif). In: F. Martin-Hernandez, C.M. Lüneburg, C. Aubourg and M. Jackson (Eds.), Magnetic Fabric: Methods and Applications. Geol. Soc. London, Spec. Publ., v.238, pp.361–380.Google Scholar
  12. Choudhary, A.K., Gopalan, K. and Sastry, C.A. (1984) Present status of the geochronology of Precambrian rocks of Rajasthan. Tectonophysics, v.105, pp.131–140.CrossRefGoogle Scholar
  13. De Wall, H. and Pandit, M.K. (2007) Synkinematic intrusion of Mt. Abu granitoids, NW India: a combined microstructural and AMS study. Geotectonic Res., v.95, pp.87–95.CrossRefGoogle Scholar
  14. Deb, M., Thorpe, R.I., Krstic, D., Corfu, F. and Davis, D.W. (2001) Zircon U-Pb and galena Pb isotope evidence for an approximate 1.0 Ga terrane constituting the western margin of the Aravalli-Delhi orogenic belt, northwestern India. Precambrian Res., v.108, pp.195–213.CrossRefGoogle Scholar
  15. Djouadi, M.T., Gleizes, G., Ferre, E., Bouchez, J.L., Caby, R. and Lesquer, A. (1997) Oblique magmatic structures of two epizonal granite plutons, Hoggar, Algeria: late-orogenic emplacement in a transcurrent orogen. Tectonophysics, v.279, pp.351–374.CrossRefGoogle Scholar
  16. Eby, N. and Kochhar, N. (1990) Geochemistry and petrogenesis of the Malani Igneous Suite, northern India. Jour. Geol. Soc. India, v.36, pp.109–130.Google Scholar
  17. Ellwood, B.B. (1978) Flow and emplacement direction determined for selected basaltic bodies using magnetic susceptibility anisotropy measurements. Earth Planet. Sci. Lett., v.41, pp.254–264.CrossRefGoogle Scholar
  18. Gaillot, P., DE Saint-Blanquat, M. and Bouchez, J.L. (2006) Effects of magnetic interactions in anisotropy of magnetic susceptibility: Models, experiments and implications for igneous rock fabrics quantification. Tectonophysics, v.418, pp.3–19.CrossRefGoogle Scholar
  19. Gregory L.C., Meert J.G, Bingen B., Pandit M.K. and Torsvik, T.H. (2009) Paleomagnetism and geochronology of the Malani Igneous Suite, northwest India: implications for the configuration of Rodinia and assembly of Gondwana. Precambrian Res., v.170, pp.13–26.CrossRefGoogle Scholar
  20. Greiling, R.O., Grimmer, J.C., Dewall, H. and Björk, L. (2007) Mesoproterozoic dyke swarms in Central Scandinavia, their distribution, Caledonian overprint and geochemistry. Geol. Magz., v.144, pp.525–546.CrossRefGoogle Scholar
  21. Gudmundsson, A. (1995) The geometry and growth of dykes. In: G. Baer and A. Heimann (Eds.), Physics and Chemistry of Dykes, Balkema, Rotterdam, pp.23–34.Google Scholar
  22. Gudmundsson A. and Marinoni, L.B. (1999) Geometry, emplacement, and arrest of dykes. Annales Tectonicae, v.13, pp.71–92.Google Scholar
  23. Gupta S.N., Arora Y.K., Mathur R.K., Iqballuddin, Prasad, B., Sahai, T.N. and Sharma, S.B. (1980) Lithostratigraphic map of Aravalli region. Geol. Surv. India, Hyderabad.Google Scholar
  24. Gupta, S.N., Arora, Y.K., Mathur, R.K., Iqballuddin, Prasad, B., Sahai, T.N. and Sharma S.B. (1997) The Precambrian Geology of the Aravalli Region, Southern Rajasthan and Northeastern Gujarat. Mem. Geol. Surv. India, v.123, 262p.Google Scholar
  25. Handke M.J., Tucker R.D. and Ashwal, L.D. (1999) Neoproterozoic continental arc magmatism in west-central Madagascar. Geology, v.27, pp.351–354.CrossRefGoogle Scholar
  26. Hargraves, R.B., Johnson, D. and Chan, C.Y. (1991) Distribution anisotropy: the cause of AMS in igneous rocks? Geophys. Res. Lett., v.18, pp.2193–2196.CrossRefGoogle Scholar
  27. Heron, A.M. (1953) Geology of Central Rajputana. Mem. Geol. Surv. India, v.79, 339p.Google Scholar
  28. Hrouda, F. (1993) Theoretical models of magnetic anisotropy to strain relationship revised. Phys. Earth Planet. Inter., v.77, pp.237–249.CrossRefGoogle Scholar
  29. Hrouda, F. (1982) Magnetic anisotropy of rocks and its application in Geology and Geophysics. Geophys. Surv., v.5, pp.37–82.CrossRefGoogle Scholar
  30. Hrouda, F., Schulmann, K., Suppes, M., Ullemayer, K., DE Wall, H. and Weber, K. (1997) Quantitive relationship between lowfield AMS and phyllosilicate fabric: A review. Phy. Chem. Earth, v.22, pp.153–156.CrossRefGoogle Scholar
  31. Jelinek V. (1981). Characterization of the magnetic fabrics of rocks. Tectonophysics, v.79, pp.63–67.CrossRefGoogle Scholar
  32. Li, Z.X., Li, X.H., Kinny, P.D. and Wang, J. (1999) The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth Planet Sci. Lett., v.173, pp.171–181.CrossRefGoogle Scholar
  33. Mamtani, M.A. and Greiling, R.O. (2005) Granite emplacement and its relation with regional deformation in the Aravalli Mountain Belt (India)-inferences from magnetic fabric. Jour. Struc. Geol., v.27, pp.2008–2029.CrossRefGoogle Scholar
  34. Martin-hernandez, F. and Hirt, A.M. (2003) The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals. Tectonophysics, v.367, pp.13–28.CrossRefGoogle Scholar
  35. Meert, J.G. (2003) A Synopsis of events related to the assembly of East Gondwana. Tectonophysics, v.362, pp.1–40.CrossRefGoogle Scholar
  36. Pandit, M.K. and Amar Deep (1997) Petrogenesis of late Proterozoic Malani Suite of rocks in the northwestern fringe of Indian shield. In: Geology of South Asia -II, Geol. Surv. Sri Lanka, Special Paper, v.7, pp.85–91.Google Scholar
  37. Pandit, M.K. and de Wall, H. (2009) Geochemistry and magnetic fabric analysis of the Mt. Abu batholith in the Aravalli-Delhi foreland — implications for Neoproterozoic tectonics in NW India. Int. Jour. Earth Sci. (in review).Google Scholar
  38. Pandit, M.K., Carter, L.M., Ashwal, L.D., Tucker, R.D., Torsvik, T.H., Jamtveit, B. and Bhushan, S.K. (2003) Age, petrogenesis and significance of 1 Ga granitoids and related rocks from the Sendra area, Aravalli Craton, NW India. Jour. Asian Earth Sci., v.22, pp.363–381.CrossRefGoogle Scholar
  39. Pareek, H.S. (1984) Pre-Quaternary geology and mineral resources of northwestern Rajasthan. Mem. Geol. Surv. India, v.115, 99p.Google Scholar
  40. Paterson, S.R., Fowler, T.K., Schmidt, K.L., Yoshinobu, A.S, Yuan, E.S. and Miller, R.B. (1998) Interpreting magmatic fabric patterns in plutons. Lithos, v.44, pp.53–82.CrossRefGoogle Scholar
  41. Roy, A.B. and Sharma, K.K. (1999) Geology of the region around Sirohi town, western Rajasthan — store of Neoproterozoic evolution of the Trans-Aravalli crust. In: Paliwal, B.S. (Ed.), Geological evolution of western Rajasthan. Scientific Publishers (India), Jodhpur, pp.19–33.Google Scholar
  42. Sharma, K. K. (2004) The Neoproterozoic Malani Magmatism of the northwestern Indian shield: Implications for crust building processes. Jour. Earth Syst. Sci., v.113, pp.795–807.CrossRefGoogle Scholar
  43. Siegesmund, S. Ullemeyer, K. and Dahms, M. (1995) Control on magnetic rock fabrics by mica preferred orientation: a quantitative approach. Jour. Struct. Geol., v.17, pp.1601–1613.CrossRefGoogle Scholar
  44. Staudigel, H., Gee, J., Tauxe, L. and Varga, R.J. (1992) Shallow intrusive directions of sheeted dykes in the Troodos ophiolite: Anisotropy of magnetic susceptibity and structural data. Geology, v.20, pp.841–844.CrossRefGoogle Scholar
  45. Tarling, D.H. and Hrouda, F. (1993) The Magnetic Anisotropy of Rocks. Chapman & Hall, London, 217p.Google Scholar
  46. Tobisch, O.T., Collerson, K.D., Bhattacharya, T. and Mukhopadhyay, D. (1994) Structural relationship and Sr — Nd isotope systematics of polymetamorphic granitic gneisses and granitic rocks from central Rajasthan. India — implications for the evolution of Aravalli craton. Precambrian Res., v.65, pp.319–339.CrossRefGoogle Scholar
  47. Torsvik, T.H., Carter, L.M., Ashwal, L.D., Bhushan, S.K., Pandit, M.K. and Jamtveit, B. (2001) Rodinia refined or obscured: Palaeomagnetism of the Malani Igneous Suite (NW India). Precambrian Res., v.108, pp.319–333.CrossRefGoogle Scholar
  48. Tucker, R.D., Ashwal, L.D. and Torsvik, T.H. (2001) U-Pb geochronology of Seychelles granitoids: a Neoproterozoic continental arc fragment. Earth Planet Sci. Lett., v.187, pp.27–38.CrossRefGoogle Scholar
  49. van Lente, B., Ashwal, L.D., Pandit, M.K., Bowring, S.A. and Torsvik, T.H. (2009) Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, northwest India: implications for late Precambrian tectonic evolution of the Aravalli craton. Precambrian Res., v.170, pp.202–222.CrossRefGoogle Scholar

Copyright information

© Geological Society of India 2010

Authors and Affiliations

  • Helga de Wall
    • 1
    Email author
  • Stefan Schöbel
    • 1
  • Manoj K. Pandit
    • 2
  • Kamal K. Sharma
    • 3
  • J. Just
    • 1
  1. 1.Geozentrum NordbayernUniversitat Erlangen-NürnbergErlangenGermany
  2. 2.Department of GeologyUniversity of RajasthanJaipurIndia
  3. 3.Department of GeologyGovernment Postgraduate CollegeSirohiIndia

Personalised recommendations