Advertisement

Refugia and Allee Effect in Prey Species Stabilize Chaos in a Tri-Trophic Food Chain Model

  • Binayak Nath
  • Nitu Kumari
  • Vikas Kumar
  • Krishna Pada DasEmail author
Original Research
  • 8 Downloads

Abstract

In this paper a mathematical model is proposed and analyzed to study the dynamics of tri-trophic food chain model with refugia and allee effect in prey species. Criteria for local stability, instability and global stability of the non-negative equlibria are obtained. Different conditions for the coexistence of equilibrium solutions are discussed. Persistence, permanence of the system and global stability of the positive interior equilibrium solution are discussed. Further we pay attention to the chaotic dynamics which is produced by half-saturation constant. Our numerical simulations reveal that the three species food chain model without refugia and allee effect induced chaos from stable focus for increasing the value of half-saturation constant. We conclude that chaotic dynamics can be controlled by the Allee and refugia parameters.

Keywords

Tri-trophic food chain Local stability Global stability Hopf bifurcation Direction of Hopf bifurcation Permanence and non-permanence 

Notes

Acknowledgements

The authors are grateful to the Editor and reviewers for their helpful comments and suggestions.

References

  1. 1.
    Al-Khedhairi, A.: The Chaos and control of food chain model using nonlinear feedback. Appl. Math. Sci. 3(12), 591–604 (2009)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Anholt, B.R., Werner, E.E.: Density-dependentconsequences of induced behavior. In: Tollrian, R., Harvell, C.D. (eds.) The Ecology and Evolution of Inducible defenses, pp. 218–230. Princeton, Princeton University Press (1999)Google Scholar
  3. 3.
    Ali Khan., M., Ghosh., J., Sahoo.,B.: Controlling Chaos in a food chain model through threshold harvesting. Fish. Aquac. J. 6, 142 (2015)Google Scholar
  4. 4.
    Boukal, D.S., Berec, L.: Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. J. Theor. Biol. 218(375), 174 (2002)MathSciNetGoogle Scholar
  5. 5.
    Bronmark, C., Petterson, L.B., Nilsson, P.A.: Predator-induced defense in crucian carp. In: Tollrian, R., Harvell, C.D. (eds.) The Ecology and Evolution of Inducible Defenses, pp. 213–217. Princeton, Princeton University Press (1999)Google Scholar
  6. 6.
    Bairagi, N., Roy, P.K., Chattopadhyay, J.: Role of infection on the stability of a predator-prey system with several response functionsa comparative study. J. Theor. Biol. 248(1), 1017 (2007)CrossRefGoogle Scholar
  7. 7.
    Bhattacharyya, R., Mukhopadhyay, B.: On an eco-epidemiological model with prey harvesting and predator switching: local and global perspectives, nonlinear analysis. Real World Appl. 11(5), 38241733 (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dahl, J., Peckarsky, B.L.: Induced morphological defenses in the wild: predator effects on a mayfly, Drunella coloradensis. Ecology 83, 1620–1634 (2002)CrossRefGoogle Scholar
  9. 9.
    Eisenberg, J.N., Maszle, D.R.: The structural stability of a three-species food chain model. J. Theor. Biol. 176, 501–510 (1995)CrossRefGoogle Scholar
  10. 10.
    Gonzalez-Olivares, E., Ramos-Jiliberto, R.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166(1–2), 135176 (2003)Google Scholar
  11. 11.
    Gakkhar, S., Singh, A.: Control of chaos due to additional predator in the Hastings–Powell food chain model. J. Math. Anal. Appl. 385(1), 423–438 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gilpin, M.E.: Spiral chaos in a predator-prey model. Am. Nat. 113, 306178 (1979).  https://doi.org/10.1086/283389 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gomez, J.M., Zamora, R.: Thorns as induced mechanical defense in a long-lived shrub (Hormathophylla spinosa, Cruciferae). Ecology 84, 885–890 (2002)CrossRefGoogle Scholar
  14. 14.
    Gowda, J.H.: Spines of Acacia tortilis: what do they defend and how? Oikos 77, 279–284 (1996)CrossRefGoogle Scholar
  15. 15.
    Gilbert, J.J.: Kairomone-induced morphological defences inrotifers. In: Tollrian, R., Harvell, C.D. (eds.) The Ecology and Evolution of Inducible Defenses, pp. 127–141. Princeton, Princeton University Press (1999)Google Scholar
  16. 16.
    Hastings, A., Powell, T.: Chaos in three-species food chain. Ecology 72(3), 896–903 (1991)CrossRefGoogle Scholar
  17. 17.
    Hassell, M., Lawton, J., May, R.M.: Pattern of dynamical behavior in single-species populations. J. Anim. Ecol. 45, 471–486 (1976)CrossRefGoogle Scholar
  18. 18.
    Harvell, C.D.: Complex biotic environments, coloniality andheritable variation for inducible defenses. In: Tollrian, R., Harvell, C.D. (eds.) The Ecology and Evolution of Inducible Defenses, pp. 231–244. Princeton, Princeton University Press (1999)Google Scholar
  19. 19.
    Havel, J.E.: Predator-induced defenses: a review. In: Kerfoot, W.C., Sih, A. (eds.) Predation: Direct and Indirect Impacts on Aquatic Communities, pp. 263–278. University Press of NewEngland, Hanover (1987)Google Scholar
  20. 20.
    Hassel, M.P., May, R.M.: Stability in insect host-parasite models. J. Anim. Ecol. 42, 693175 (1973)Google Scholar
  21. 21.
    Freedman, H.I., Ruan, S.G.: Uniform persistence in functional differential equations. J. Differ. Equations 115.1, 173–192 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hassard, B. D. , Kazarinoff, N. D., Wan, Y.-H., Theory and applications of Hopf bifurcation. London Mathematical Society Lecture Note Series 41. Cambridge, Cambridge University Press (1981)Google Scholar
  23. 23.
    Hochberg, M.E., Holt, R.D.: Refuge evolution and the population dynamics of coupled hostparasitoid associations. Evol. Ecol. 9(6), 633171 (1995)CrossRefGoogle Scholar
  24. 24.
    Jeschke, J.M., Tollrian, R.: Density-dependent effects of prey defences. Oecologia 123, 391176 (2000)CrossRefGoogle Scholar
  25. 25.
    Krivan, V.: Effects of optimal antipredator behavior of prey on predator-prey dynamics: the role of refuges. Theor. Popul. Biol. 53(2), 131172 (1998)CrossRefzbMATHGoogle Scholar
  26. 26.
    Kar, T.K.: Stability analysis of a prey-predator model incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 10(6), 681171 (2005)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Karban, R., Baldwin, I.T.: Induced Responses to Herbivory. University of Chicago Press, Chicago (1997)CrossRefGoogle Scholar
  28. 28.
    Kuhlmann, H.W., Kusch, J., Heckmann, K.: Predator- induced defenses in ciliated protozoa. In: Tollrian, R., Harvell, C.D. (eds.) The Ecology and Evolution of Inducible Defenses, pp. 142–159. Princeton, Princeton University Press (1999)Google Scholar
  29. 29.
    Kooi, B.W., Voorn, G.A.K., van, A.K., Das, K.P.: Stabilization and complex dynamics in a predatorprey model with predator suffering from an infectious disease. Ecol. Complex. 8(1), 113172 (2011)CrossRefGoogle Scholar
  30. 30.
    Kang, Y., Sasmal, S.K., Bhowmick, A.R., Chattopadhyay, J.: Dynamics of a predator prey system with prey subject to Allee effects and disease. Math. Biosci. Eng. 11(4), 877178 (2014)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Lampert, W., Rothhaupt, K.O., von Elert, E.: Chemical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia). Limnol. Oceanogr. 39, 1543–1550 (1994)CrossRefGoogle Scholar
  32. 32.
    Lively, C.M.: Developmental strategies in spatially variable environments: barnacle shell dimorphism and strategic models ofselection. In: Tollrian, R., Harvell, C.D. (eds.) The Ecology and Evolution of Inducible Defenses, pp. 245–258. Princeton, Princeton University Press (1999)Google Scholar
  33. 33.
    Liu X, Wang C. Bifurcation of a predator-prey model with disease in the prey. Nonlinear Dyn. 62(4), 841–850 (2010)Google Scholar
  34. 34.
    Ma, Z., Li, W., Zhao, Y., Wang, W., Zhang, H., Li, Z.: Effects of prey refuges on a predator-prey model with a class of functional responses: the role of refuges. Math. Biosci. 218(2), 7317 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Madhusudanan, V., Vijaya, S., Gunasekaran, M.: Impact of harvesting in three species food web model with two distinct functional responses. Int. J. Innov. Res. Sci. Eng. Technol. 3(2), 9505–9513 (2014)Google Scholar
  36. 36.
    Michalski, J., Poggiale, J.C., Arditi, R., Auger, P.M.: Macroscopic dynamic effects of migrations in patchy predator-prey systems. J. Theor. Biol. 185(4), 459174 (1997)CrossRefGoogle Scholar
  37. 37.
    May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1973)Google Scholar
  38. 38.
    May, R.M.: Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186(4164), 645–7 (1974)CrossRefGoogle Scholar
  39. 39.
    May, M.R., Leonard, J.W.: Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29(2), 243–253 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Olsen, L.F., Truty, G.L., Schaffer, W.M.: Oscillations and chaos in epidemics: a non-linear dynamic study of six childhood diseases in Copenhagen, Denmark. Theor. Popul. Biol. 33, 344–370 (1988)CrossRefzbMATHGoogle Scholar
  41. 41.
    Powell, T., Richerson, P.J.: Temporal variation, spatial heterogeneity, and competition for resources in plankton systems: a theoretical model. Am. Nat. 125(3), 17 (1985)CrossRefGoogle Scholar
  42. 42.
    Ruxton, G.D.: Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous cycles. Proc. R. Soc. Lond. B 256, 189–193 (1994)CrossRefGoogle Scholar
  43. 43.
    Ruxton, G.D.: Short term refuge use and stability of predator-prey models. Theor. Popul. Biol. 47(1), 117 (1995)CrossRefzbMATHGoogle Scholar
  44. 44.
    Ruxton, G.D.: Chaos in a three-species food chain with a l ower bound on the bottom population. Ecology 77(1), 317–319 (1996)CrossRefGoogle Scholar
  45. 45.
    Sahoo, B., Poria, S.: The chaos and control of a food chain model supplying additional food to top-predator. Chaos Solitons Fractals 58, 52–64 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Saha, B., Bhowmick, A.R., Chattopadhyay, J., Bhattacharya, S.: On the evidence of an allee effect in herring populations and consequences for population survival: a model-based study. Ecol. Model. 250, 7217 (2013)CrossRefGoogle Scholar
  47. 47.
    Schaffer, W.M., Kot, M.: Chaos in ecological systems: the coals that Newcastle forgot. Trends Ecol. Evol. 1, 58–63 (1986a)Google Scholar
  48. 48.
    Schaffer, W.M., Kot, M.: Differential systems in ecology and epidemiology. In: Holden, A.V. (ed.) Chaos: An Introduction, pp. 158–178. University of Manchester Press, Manchester (1986b)Google Scholar
  49. 49.
    Schaffer, W.M., Kot, M.: Nearly one dimensional dynamics in an epidemic. J. Theor. Biol. 112, 403–427 (1985a)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Saifuddin, M., Biswas, S., Samanta, S., Sarkar, S., Chattopadhyay, J.: Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator. Chaos Solitons Fractals 91, 270175 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Saifuddin, M.,Samanta, S., Biswas, S., Chattopadhyay, J.: An eco-epidemiological model with different competition coefficients and Strong-Allee in the Prey. Int. J. Bifurc. Chaos 27(08), 1730027 (2017)Google Scholar
  52. 52.
    Tang, K.W.: Grazing and colony size development in Phaeocystis globosa (Prymnesiophyceae): the role of a chemical signal. J. Plankton Res. 25, 831–842 (2003)CrossRefGoogle Scholar
  53. 53.
    Turner, A.M., Bernot, R.J., Boes, C.M.: Chemical cues modify species interactions: the ecological consequences of predator avoidance by freshwater snails. Oikos 88, 148–158 (2000)CrossRefGoogle Scholar
  54. 54.
    Tollrian, R., Dodson, S.I.: Inducible defenses incladocera: constraints, costs, and multipredator environments. In: Tollrian, R., Harvell, C.D. (eds.) The Ecology and Evolution of Inducible Defenses, pp. 177–202. Princeton, Princeton University Press (1999)Google Scholar
  55. 55.
    Vos, M., Flik, B.J.G., Vijverberg, J., Ringelberg, J., Mooij, W.M.: From inducible defences to population dynamics: modelling refuge use and life history changes in Daphnia. Oikos 99, 386–396 (2002)CrossRefGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2019

Authors and Affiliations

  • Binayak Nath
    • 3
  • Nitu Kumari
    • 2
  • Vikas Kumar
    • 2
  • Krishna Pada Das
    • 1
    Email author
  1. 1.Mahadevananda Mahavidyalaya MoniramporeKolkataIndia
  2. 2.School of Basic SciencesIndian Institute of Technology MandiMandiIndia
  3. 3.Department of PhysicsMahadevananda Mahavidyalaya MoniramporeKolkataIndia

Personalised recommendations