Differential Equations and Dynamical Systems

, Volume 27, Issue 1–3, pp 249–276 | Cite as

Another Mechanism to Control Invasive Species and Population Explosion: “Ecological” Damping Continued

  • Rana D. Parshad
  • Guangming Yao
  • Wen LiEmail author
Original Research


The control of nonnative species is a central problem in spatial ecology. Data on the invasive Burmese python (Python bivittatus) in the Florida everglades, show an exponential increase in python population, which have resulted in local prey populations reducing severely (Dorcas et al. in Proc Natl Acad Sci 109:2418–2422, 2012). This is exacerbated by the inability to harvest pythons by law, in Everglades National Park, where their concentration is extremely high. We consider a two species predator–prey model with Beddington–DeAngelis functional response, and show that it blows up in finite time, thus mimicking an “exploding” python population. Given current government policy that requires complete protection of species in national parks, we investigate novel alternative population control measures that promote efficient eco-system engineering. We establish such measures are feasible in our setting by rigorously proving boundary damping effects. That is we show that an exploding population in a region can be controlled, solely via manipulation of the boundary, such as effective corridor design. Detailed numerical simulations are performed to justify our analytical results.


Predator prey model Finite time blow-up Radial basis function Mixed boundary conditions 

Mathematics Subject Classification

Primary 35B44 35K57 65M70 Secondary 92D25 



We would like to acknowledge valuable comments from the referees that helped us greatly improve the overall quality of the manuscript.


  1. 1.
    Pimentel, D., Zuniga, R., Morrison, D.: Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52(3), 273–288 (2005)CrossRefGoogle Scholar
  2. 2.
    Simberloff, D.: Introduced species: the threat to biodiversity and what can be done. . Accessed Dec 2000
  3. 3.
    Arim, M., Abades, S., Neill, P., Lima, M., Marquet, P.: Spread dynamics of invasive species. Proc. Natl. Acad. Sci. 103(2), 374–378 (2006)CrossRefGoogle Scholar
  4. 4.
    Averill, I., Lou, Y.: On several conjectures from evolution of dispersal. J. Biol. Dyn. 6(2), 117–130 (2012)CrossRefGoogle Scholar
  5. 5.
    Bampfylde, C.J., Lewis, M.A.: Biological control through intraguild predation: case studies in pest control, invasive species and range expansion. Bull. Math. Biol. 69, 1031–1066 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Clark, J.S., Lewis, M., Horvath, L.: Invasion by extremes: population spread with variation in dispersal and reproduction. Am. Nat. 157(5), 537–554 (2001)CrossRefGoogle Scholar
  7. 7.
    Lou, Y., Munther, D.: Dynamics of a three species competition model. Discrete Contin. Dyn. Syst. A 32, 3099–3131 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Okubo, A., Maini, P.K., Williamson, M.H., Murray, J.D.: On the spatial spread of the grey squirrel in Britain. Proc. R. Soc. Lond. Ser. B 238, 113–125 (1989)CrossRefGoogle Scholar
  9. 9.
    Shigesada, N., Kawasaki, K.: Biological Invasions: Theory and Practice. Oxford University Press, Oxford (1997)Google Scholar
  10. 10.
    Dorcas, M.E., Willson, J.D., Reed, R.N., Snow, R.W., Rochford, M.R., Miller, M.A., Mehsaka Jr., W.E., Andreadis, P.T., Mazzotti, F.J., Romagosa, C.M., Hart, K.M.: Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl. Acad. Sci. 109, 2418–2422 (2012)CrossRefGoogle Scholar
  11. 11.
    Schofield, P., Loftus, W.: Nonnative fishes in Florida freshwaters: a literature review and synthesis. Rev. Fish. Biol. Fish. 25(1), 117–145 (2015)CrossRefGoogle Scholar
  12. 12.
    Hood, J.: Asian carp: State’s fish kill in Chicago sanitary and ship canal yield only 1 Asian carp. (2009) Accessed 26 June 2017
  13. 13.
    Blinder, A.: Aimed at Zika Mosquitoes, spray kills millions of honeybees, New York Times, Sept 1. (2016)
  14. 14.
    Wedekind, C.: Demographic and genetic consequences of disturbed sex determination. Phil. Trans. R. Soc. B 372(1729), 20160326 (2017)CrossRefGoogle Scholar
  15. 15.
    Wedekind, C.: Managing population sex ratios in conservation practice:how and why?. In: Topics in Conservation Biology. InTech (2012)Google Scholar
  16. 16.
    Crossland, M.R., Haramura, T., Salim, A.A., Capon, R.J., Shine, R.: Exploiting intraspecific competitive mechanisms to control invasive cane toads. Proc. Biol. Sci. 279(1742), 3436–3442 (2012)Google Scholar
  17. 17.
    Berryman, A et al.: The theory and classification of outbreaks. In: Insect Outbreaks, pp 3–30. Academic Press, Inc., (1987)Google Scholar
  18. 18.
    Ludwig, D., Holling, C.: Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol. 47(1), 315–332 (1978)CrossRefGoogle Scholar
  19. 19.
    Diez, J.M., D’Antonio, C.M., Dukes, J.S., Grosholz, E.D., Olden, J.D., Sorte, C.J., Jones, S.J.: Will extreme climatic events facilitate biological invasions? Front. Ecol. Environ. 10(5), 249–257 (2012)CrossRefGoogle Scholar
  20. 20.
    Van Driesche, R., Bellows, T.: Biological Control. Kluwer Academic Publishers, Massachusetts (1996)CrossRefGoogle Scholar
  21. 21.
    Parshad, R.D., Abderrahmanne, H., Upadhyay, R.K., Kumari, N.: Finite time blowup in a realistic food chain model. ISRN Biomath. 2013, 1–12 (2013). (Article ID 424062)CrossRefGoogle Scholar
  22. 22.
    Parshad, R.D., Basheer, A.: “A note on periodic solutions of a three-species food chain model” [Applied Math E-Notes, 9 (2009), 47–54]. Appl. Math. E Notes 16, 45–55 (2016)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Parshad, R.D., Kumari, N., Kouachi, S.: A remark on “Study of a Leslie–Gower-type tritrophic population model” [Chaos, Solitons and Fractals 14 (2002) 1275–1293]. Chaos Solitons Fractals 71, 22–28 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Parshad, R.D., Qansah, E., Black, K., Beauregard, M.: Biological control via “ecological” damping: an approach that attenuates non-target effects. Math. Biosci. 273, 23–44 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Parshad, R., Upadhyay, R.K., Mishra, S., Tiwari, S., Sharma, S.: On the explosive instability in a three species food chain model with modified Holling type IV functional response. Math. Methods Appl. Sci. (2017). (Appeared online May 3rd)
  26. 26.
    Parshad, R.D., Kouachi, S., Kumari, N.: A comment on “Mathematical study of a Leslie–Gower type tritrophic population model in a polluted environment” [Modeling in Earth Systems and Environment 2 (2016) 1–11.]. Model. Earth Syst. Environ. 2(2), 1–5 (2016)CrossRefGoogle Scholar
  27. 27.
    Quittner, P., Souplet, P.: Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States. Birkhauser, Basel (2007)zbMATHGoogle Scholar
  28. 28.
    Straughan, B.: Explosive Instabilities in Mechanics. Springer, Heidelberg (1998)CrossRefzbMATHGoogle Scholar
  29. 29.
    Kim, K., Lin, Z.: Blowup in a three species cooperating model. Appl. Math. Lett. 17, 89–94 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lou, Y., Nagylaki, T., Ni, W.: On diffusion induced blowups in a mutualistic model. Nonlinear Anal. 45, 329–342 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Hillen, T., Painter, K.: A users guide to PDE models for chemotaxis. J. Math. Biol. 57, 183–217 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Grinn, L., Hermann, P., Korotayev, A., Tausch, A.: History & Mathematics: Processes and Models of Global Dynamics. ‘Uchitel’ Publishing House, Volgograd (2010)Google Scholar
  33. 33.
    Parshad, R.D., Qansah, E., Beauregard, M., Kouachi, S.: On, “small” data blow-up in a three species food chain model. Comput. Math. Appl. 73(4), 576–587 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Parshad, R.D., Bhowmick, S., Quansah, E., Basheer, A., Upadhyay, R.K.: Predator interference effects on biological control: the paradox of the generalist predator revisited. Commun. Nonlinear Sci. Numer. Simul. 39, 169–84 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Quansah, E., Parshad, R.D., Mondal, S.: Cold induced mortality of the Burmese Python: an explanation via stochastic analysis. Physica A 467(1), 356–364 (2017)CrossRefGoogle Scholar
  36. 36.
    Parshad, R.D., Basheer, A., Jana, D., Tripathi, J.: Do prey handling predators really matter: subtle effects of a Crowley-Martin functional response. Chaos Solitons Fractals 103, 410–421 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Shang, Y.: Finite-time consensus for multi-agent systems with fixed topologies. Int J Syst Sci 43(3), 499–506 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Shang, Y., Ye, Y.: Fixed-time group tracking control with unknown inherent nonlinear dynamics. IEEE Access 5, 12833–12842 (2017)CrossRefGoogle Scholar
  39. 39.
    “United States of America, North America”. UNEP. World Database on Protected Areas. 2015–05-02. Retrieved 2015–05-02Google Scholar
  40. 40.
    Cantrell, R., Cosner, C.: Spatial Ecology via Reaction Diffusion Equations. Wiley, Chichester (2003)zbMATHGoogle Scholar
  41. 41.
    Kindlmann, P., Burel, F.: Connectivity measures: a review. Landsc. Ecol. 23, 879–890 (2008)Google Scholar
  42. 42.
    Upadhyay, R.K., Agrawal, R.: Dynamics and responses of a predatorprey system with competitive interference and time delay. Nonlinear Dyn. 83(1–2), 821–837 (2016)CrossRefzbMATHGoogle Scholar
  43. 43.
    Beddington, J.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)CrossRefGoogle Scholar
  44. 44.
    Hassell, M.P.: Mutual interference between searching insect parasites. J. Anim. Ecol. 40, 473–486 (1971)CrossRefGoogle Scholar
  45. 45.
    Rogers, D.J., Hassell, M.P.: General models for insect parasite and predator searching behaviour: interference. J. Anim. Ecol. 43, 239–253 (1974)CrossRefGoogle Scholar
  46. 46.
    Hassell, M.: Density dependence in single species population. J. Anim. Ecol. 44, 283–295 (1975)CrossRefGoogle Scholar
  47. 47.
    Allaby, M.: A Dictionary of Ecology. Oxford University Press, Oxford (2010)Google Scholar
  48. 48.
    Freedman, H.I., Rao, V.S.H.: The trade-off between mutual interferences and time lag in predator prey systems. Bull. Math. Biol. 45, 991–1004 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Berec, L.: Impacts of foraging facilitation among predators on predatorprey dynamics. Bull. Math. Biol. 72, 94–121 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Shang, Y.: The limit behavior of a stochastic logistic model with individual time-dependent rates. J. Math. 2013, 1–7 (2013)Google Scholar
  51. 51.
    Li, B., Liao, C.H., Zhang, X.D., Chen, H.L., Wang, Q., Chen, Z.Y., Cheng, X.L.: Spartina alterniflora invasions in the Yangtze River estuary, China: an overview of current status and ecosystem effects. Ecol. Eng. 35(4), 511–520 (2009)CrossRefGoogle Scholar
  52. 52.
    Payne, L.E., Schaefer, P.W.: Blow-up in parabolic problems under Robin boundary conditions. Appl. Anal. 87, 699–707 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Sell, G., You, Y.: “Dynamics of evolutionary equations”. Applied Mathematical Sciences, vol. 143, 2nd edn. Springer, New York (2002)zbMATHGoogle Scholar
  54. 54.
    Wei, J., Winter, M.: Mathematical Aspects of Pattern Formation in Biological Systems, vol. 189. Springer Science & Business Media, Berlin (2013)zbMATHGoogle Scholar
  55. 55.
    Zerroukat, M., Power, H., Chen, C.S.: A numerical method for heat transfer problems using collocation and radial basis functions. Int. J. Numer. Methods Eng. 42, 1263–1278 (1998)CrossRefzbMATHGoogle Scholar
  56. 56.
    Sarler, B., Gobin, D., Goyeau, B., Perko, J., Power, H.: Natural convection in porous media-dual reciprocity boundary element method solution of the Darcy model. Int. J. Numer. Methods Fluids 33, 279–312 (2000)CrossRefzbMATHGoogle Scholar
  57. 57.
    Chantasiriwan, S.: Performance of multiquadric collocation method in solving liddriven cavity flow problem with low reynolds number. Comput. Model. Eng. Sci. 15, 137–146 (2006)Google Scholar
  58. 58.
    Yao, G., Yu, Z.: A localized meshless approach for modeling spatial-temporal calcium dynamics in ventricular myocytes. Int. J. Numer. Methods Biomed. Eng. 28(2), 187–204 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Chen, C.S., Fan, C.M., Wen, P.H.: The method of particular solutions for solving certain partial differential equations. Numer. Methods Part. Differ. Equ. 28, 506–522 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Yao, G.: Local radial basis function methods for solving partial differential equations. The University of Southern Mississippi (2010)Google Scholar
  61. 61.
    Lamichhane, A.R., Chen, C.S.: The closed-form particular solutions for Laplace and biharmonic operators using a Gaussian function. Appl. Math. Lett. 46, 50–6 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Yao, G., Zheng, H., Chen, C.S.: A modified method of approximate particular solutions for solving linear and nonlinear PDEs. Numer. Methods Partial Differ. Equ. 33(6), 1839–1858 (2017)Google Scholar
  63. 63.
    Chen, C.S., Fan, C.M., Wen, P.H.: The method of particular solutions for solving elliptic problems with variable coefficients. Int. J. Comput. Methods 8, 545–559 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Wen, P.H., Chen, C.S.: The method of particular solutions for solving scalar wave equations. Int. J. Numer. Methods Biomed. Eng. 26(12), 1878–89 (2010)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Bustamante, C.A., Power, H., Sua, Y.H., Florez, W.F.: A global meshless collocation particular solution method (integrated Radial Basis Function) for two-dimensional Stokes flow problems. Appl. Math. Modell. 37(6), 4538–4547 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Reutskiy, S.Y.: Method of particular solutions for nonlinear Poisson-type equations in irregular domains. Eng. Anal. Bound. Elem. 37(2), 401–408 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Iske, A.: On the stability of polyharmonic spline reconstruction. In: Conference Proceedings of Sampling Theory and Applications (SampTA2011)Google Scholar
  68. 68.
    Chen, C.S., Hon, Y.C., Schaback, R.A.: Scientific computing with radial basis functions. Tech. Rep., Department of Mathematics, University of Southern Mississippi, Hattiesburg, MS 39406, USA, preprint (2005)Google Scholar
  69. 69.
    Resasco, J., et al.: Landscape corridors can increase invasion by an exotic species and reduce diversity of native species. Ecology 95(8), 2033–2039 (2014)CrossRefGoogle Scholar
  70. 70.
    Emsens, W., Hirch, B., Kays, R., Jansen, P.: Prey refuges as predator hotspots: ocelot (Leopardus pardalis) attraction to agouti (Dasyprocta punctata) dens. Acta Theriol. 59(2), 257–262 (2014)CrossRefGoogle Scholar
  71. 71.
    Ylonen, H., Sundell, J., Tiilikainen, R., Eccard, J., Horne, T.: Weasels (Mustela nivalis nivalis) preference for olfactory cues of the vole (Clethrionomys glareolus). Ecology 84, 1447–1452 (2003)CrossRefGoogle Scholar
  72. 72.
    McCarthy, K.A., Chabot-Couture, G., Shuaib, F.: A spatial model of Wild Poliovirus Type 1 in Kano State, Nigeria: calibration and assessment of elimination probability. BMC Infect. Dis. 16(1), 521 (2016)CrossRefGoogle Scholar
  73. 73.
    Robinson, O., Fefferman, N., Lockwood, J.: How to effectively manage invasive predators to protect their native prey. Biol. Conserv. 165, 146–153 (2013)CrossRefGoogle Scholar
  74. 74.
    Hobbs, R., Hallett, L., Ehrlich, P., Mooney, H.: intervention ecology: applying ecological science in the twenty-first century. BioScience 61(6), 1–9 (2011)CrossRefGoogle Scholar
  75. 75.
    Isaksson, D., Wallander, J., Larsson, M.: Managing predation on ground-nesting birds: the effectiveness of nest exclosures. Biol. Conserv. 136, 136–142 (2007)CrossRefGoogle Scholar
  76. 76.
    Ivan, J.S., Murphy, R.K.: What preys on piping plover eggs and chicks? Wildl. Soc. Bull. 33(1), 113119 (2005)CrossRefGoogle Scholar
  77. 77.
    Kelly, Jr., M, R., Wang, X.: The optimal implementation of the trojan y chromosome eradication strategy of an invasive species. J. Biol. Syst. 25, 1–20 (2017)Google Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2017

Authors and Affiliations

  1. 1.Department of MathematicsClarkson UniversityPotsdamUSA
  2. 2.College of Big Data ScienceTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations