Advertisement

Differential Equations and Dynamical Systems

, Volume 27, Issue 4, pp 493–514 | Cite as

Maximum Number of Limit Cycles for Generalized Kukles Polynomial Differential Systems

  • Nawal Mellahi
  • Amel BoulfoulEmail author
  • Amar Makhlouf
Original Research
  • 63 Downloads

Abstract

We study the maximum number of limit cycles of the polynomial differential systems of the form
$$\begin{aligned} \dot{x}=-y+l(x), \,\dot{y}=x-f(x)-g(x)y-h(x)y^{2}-d_{0}y^{3}, \end{aligned}$$
where \(l(x)=\varepsilon l^{1}(x)+\varepsilon ^{2}l^{2}(x),\)\(f(x)=\varepsilon f^{1}(x)+\varepsilon ^{2}f^{2}(x),\)\(g(x)=\varepsilon g^{1}(x)+\varepsilon ^{2}g^{2}(x),\)\(h(x)=\varepsilon h^{1}(x)+\varepsilon ^{2}h^{2}(x)\) and \(d_{0}=\varepsilon d_{0}^{1}+\varepsilon ^{2}d_{0}^{2}\) where \(l^{k}(x),\)\(f^{k}(x),\)\(g^{k}(x)\) and \(h^{k}(x)\) have degree m\(n_{1},\)\(n_{2}\) and \(n_{3}\) respectively, \(d_{0}^{k}\ne 0\) is a real number for each \(k=1,2,\) and \(\varepsilon \) is a small parameter. We provide an upper bound of the maximum number of limit cycles that the above system can have bifurcating from the periodic orbits of the linear centre \(\dot{x}=-y,\, \dot{y}=x\) using the averaging theory of first and second order.

Keywords

Limit cycle Averaging theory Kukles systems 

Mathematics Subject Classification

34C29 34C25 47H11 

References

  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Natl. Bureau Stand Appl. Math. Ser. 55 (1972)Google Scholar
  2. 2.
    Buica, A., Francoise, J.P., Llibre, J.: Periodic solutions of nonlinear periodic differential systems with a small parameter. Commun. Pure Appl. Anal. 6, 103–111 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Buica, A., Llibre, J.: Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 128, 7–22 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chavarriga, J., Sáez, E., Szántó, I., Grau, M.: Coexistence of limit cycles and invariant algebraic curves for a Kukles system. Nonlinear Anal. 59, 673–693 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gradshteyn, I.S., Ryshik, I.M.: Table of integrals, series and products. In: Jeffrey, A., Zwillinger, D. (eds) 7th edn. Academic Press, New York (2007)Google Scholar
  6. 6.
    Hilbert, D.: Mathematische probleme. In: Lecture, Second International Congress of Mathematicians, pp. 253–297. Nachr. Ges. Wiss. Gottingen Math. Phys. KL, Paris (1900) [in English: Bull. Amer. Math. Soc. 8, 437–479 (1902); Bull. Amer. Math. Soc. (N. S.) 37, 407–436 (2000)]Google Scholar
  7. 7.
    Kukles, I.S.: Sur quelques cas de distinction entre un foyer et un centre. Dokl. Akad. Nauk. SSSR 43, 208–211 (1944)Google Scholar
  8. 8.
    Llibre, J., Mereu, A.C.: Limit cycles for generalized kukles polynomial differential systems. Nonlinear Anal. 74, 1261–1271 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Marsden, J.E., McCracken, M.: The Hopf bifurcation and its applications. Applied Mathematical Sciences, vol. 19. Springer, New York (1976)CrossRefGoogle Scholar
  10. 10.
    Poincaré, H.: Memoire sur les Courbes Définies par Une Équation Différentielle. Jacques Gabay, Paris (1993) [Edit. Reprinted from the original papers published in the Journal de Mathématiques 7 (1881) 375–422, 8 (1882) 251–296, 1 (1885) 167–244, and 2 (1886) 151–217]Google Scholar
  11. 11.
    Rousseau, C., Toni, B.: Local bifurcations of critical periods in the reduced Kukles system. Can. J. Math. 49, 338–358 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sadovskii, A.P.: Cubic systems of nonlinear oscillations with seven limit cycles. Diff. Uravn. SSSR 39, 472–481 (2003)MathSciNetGoogle Scholar
  13. 13.
    Sanders, J.A., Verhulst, F.: Averaging methods in nonlinear dynamical systems. Applied Mathematical Sciences, vol. 59. Springer, New York (1985)CrossRefGoogle Scholar
  14. 14.
    Verhulst, F.: Nonlinear differential equations and dynamical systems. Universitext, Springer, Berlin (1996)CrossRefGoogle Scholar
  15. 15.
    Zang, H., Zhang, T.. Tian, Y.C., Tadé, M.O.: Limit cycles for the Kukles system. J. Dyn. Control Syst. 14, 283–298 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2016

Authors and Affiliations

  1. 1.Department of Mathematics LMA LaboratoryBadji-Mokhtar UniversityAnnabaAlgeria
  2. 2.Department of Mathematics20 August 1955 UniversitySkikdaAlgeria

Personalised recommendations