Advertisement

Occurrence of Big Bang Bifurcations in Discretized Sliding-mode Control Systems

  • Enric Fossas
  • Albert GranadosEmail author
Original Research

Abstract

In this work we describe the bifurcation scenario found in a general first order system when a relay based proportional control (sliding-mode control) is considered. Based on the results given in the literature, we show the occurrence of a big bang bifurcation causing the existence of an infinite number of periodic orbits near a co-dimension two bifurcation point. We also extend in a natural way the applied theoretical result for second order systems involving 2D piecewise-defined maps.

Keywords

Big bang bifurcations Two-dimensional piecewise-defined maps Period adding Sliding-mode control Relays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avrutin V., Granados A., Schanz M.: Sufficient conditions for a period increment big bang bifurcation in one-dimensional maps. Nonlinearity 24(9), 2575–2598 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Avrutin V., Schanz M.: On multi-parametric bifurcations in a scalar piecewise-linear map. Nonlinearity 19, 531–552 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Coullet P.C., Gambaudo J.M., Tresser C.: Une nouvelle bifurcation de codimension 2: le colage de cycles. C. R. Acad. Sc. Paris, série I 299, 253–256 (1984)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Fossas, E., Granados, A.: Big bang bifurcations in a first order systems with a relay. In: Olejnik, P., Mrozowski, J., Awrejcewicz, J., Kaźmierczak, M. (eds.) Proceedings of 11th conference of dynamical systems. Analytical/numerical methods, stability, bifurcation and chaos, Lodz, pp. 147–152 (2011)Google Scholar
  5. 5.
    Galias, Z.: Basins of attraction for periodic solutions of discretized sliding mode control systems. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), New Port Beach (2010)Google Scholar
  6. 6.
    Gambaudo J.M., Glendinning P., Tresser C.: Collage de cycles et suites de Farey. C. R. Acad. Sc. Paris, série I 299, 711–714 (1984)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gambaudo J.M., Glendinning P., Tresser T.: The gluing bifurcation: symbolic dynamics of the closed curves. Nonlinearity 1, 203–214 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ghrist R., Holmes P.J.: Knotting within the gluing bifurcation. In: Thompson, J., Bishop, S. (ed.) IUTAM symposium on nonlinearilty and chaos in the enginnering dynamics., pp. 299–315. John Wiley Press, Chichester (1994)Google Scholar
  9. 9.
    Gambaudo J.M., Procaccia I., Thomae S., Tresser C.: New universal scenarios for the onset of chaos in Lorenz-type flows. Phys. Rev. Lett 57, 925–928 (1986)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Galias Z., Yu X.: Analysis of zero-order holder discretization of two-dimensional sliding mode control systems. IEEE Trans. Circuits Syst. II 55(12), 1269–1273 (2008)CrossRefGoogle Scholar
  11. 11.
    Galias Z., Yu X.: Study of periodic solutions of discretized two-dimensional sliding mode control systems. IEEE Trans. Circuits Syst. II 58(6), 381–385 (2011)CrossRefGoogle Scholar
  12. 12.
    Homburg A.J.: Global aspects of homoclinic bifurcations of vector fields. Mem. Am. Math. Soc. 121, 578 (1996)MathSciNetGoogle Scholar
  13. 13.
    Kabe, T., Saito, T., Torikai, H.: Analysis of piecewise constant models of power converters. In: International symposium on nonlinear theory and its applications, NOLTA, Dresden, pp. 71–74, (2004)Google Scholar
  14. 14.
    Leonov, N.N.: On a pointwise mapping of a line into itself. Radiofisika, 2(6), 942–956 (1959) (in Russian)Google Scholar
  15. 15.
    Procaccia I., Thomae S., Tresser C.: First-return maps as a unified renormalization scheme for dynamical systems. Phys. Rev. A 35, 1884–1900 (1987)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Turaev, D.V., Shil’nikov, L.P.: On bifurcations of a homoclinic “Figure of Eight” for a saddle with a negative saddle value. Sov. Math. Dokl., 34, 397–401 (1987) (Russian version 1986)Google Scholar
  17. 17.
    Utkin Vadim I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control ac-22(2), 212–222 (1977)CrossRefGoogle Scholar
  18. 18.
    Wang B., Yu X., Li X.: ZOH discretization effect on high-order sliding mode control systems. IEEE Trans. Ind. Electron. 55(11), 4055–4064 (2008)CrossRefGoogle Scholar
  19. 19.
    Yu X., Chen G.: Discretization behaviors of equivalent control based sliding mode control systems. IEEE Trans. Autom. Control 48(9), 1641–1646 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2012

Authors and Affiliations

  1. 1.Universitat Politècnica de Catalunya, IOCBarcelonaSpain
  2. 2.Universität Stuttgart, IPVSStuttgartGermany

Personalised recommendations