Differential Equations and Dynamical Systems

, Volume 20, Issue 2, pp 139–148 | Cite as

Integro-Differential Equations of Fractional Order

Original Research

Abstract

In this paper, the authors present some results concerning the existence and uniqueness of solutions of an integro-differential equation of fractional order by using Banach’s contraction principle, Schauder’s fixed point theorem, and the nonlinear alternative of Leray–Schauder type.

Keywords

Integro-differential equation Left-sided mixed Riemann–Liouville integral of fractional order Caputo fractional-order derivative, solution Banach’s contraction principle Schauder’s fixed point theorem Nonlinear alternative of Leray–Schauder type 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbas S., Benchohra M.: Darboux problem for perturbed partial differential equations of fractional order with finite delay. Nonlinear Anal. Hybrid Syst. 3, 597–604 (2009)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Abbas, S., Benchohra, M.: On the set of solutions of fractional order Riemann–Liouville integral inclusions. Demonstr Math (to appear)Google Scholar
  3. 3.
    Bielecki A.: Une remarque sur la méthod de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentilles ordinaries. Bull. Acad. Pol. Sci. Math. Phys. Astron. 4, 261–264 (1956)MathSciNetMATHGoogle Scholar
  4. 4.
    Burton T.A.: A fixed point theorem of Krasnosel’skii. Appl. Math. Lett. 11, 85–88 (1998)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Granas A., Dugundji J.: Fixed Point Theory. Springer-Verlag, New York (2003)MATHGoogle Scholar
  6. 6.
    Henry D.: Geometric Theory of Semilinear Parabolic Partial Differential Equations. Springer-Verlag, Berlin/New York (1989)Google Scholar
  7. 7.
    Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  8. 8.
    Krasnosel’skii M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, New York (1964)Google Scholar
  9. 9.
    Mureşan, V. (ed): Functional-Integral Equations. Mediamira, Cluj-Napoca (2003)Google Scholar
  10. 10.
    Mureşan V.: Some results on the solutions of a functional-integral equation. Stud. Univ. Babes-Bolyai Math. 56, 157–164 (2011)MathSciNetGoogle Scholar
  11. 11.
    Pachpatte B.G.: On Fredholm type integrodifferential equation. Tamkang J. Math 39, 85–94 (2008)MathSciNetMATHGoogle Scholar
  12. 12.
    Pachpatte B.G.: Qualitative properties of solutions of certain Volterra type difference equations. Tamsui Oxf. J. Math. Sci. 26, 273–285 (2010)MathSciNetMATHGoogle Scholar
  13. 13.
    Podlubny I.: Fractional Differential Equation. Academic Press, San Diego (1999)Google Scholar
  14. 14.
    Rus I.A.: Picard operators and applications. Sc. Math. Japn. 58, 191–229 (2003)MathSciNetMATHGoogle Scholar
  15. 15.
    Tenreiro Machado J.A., Kiryakova V., Mainardi F.: A poster about the old history of fractional calculus. Fract. Calc. Appl. Anal. 13, 447–454 (2010)MathSciNetMATHGoogle Scholar
  16. 16.
    Vityuk A.N., Golushkov V.A.: Existence of solutions of systems of partial differential equations of fractional order. Nonlinear Oscil. 7, 318–325 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2012

Authors and Affiliations

  • Saïd Abbas
    • 1
  • Mouffak Benchohra
    • 2
  • John R. Graef
    • 3
  1. 1.Laboratoire de MathématiquesUniversité de SaïdaSaïdaAlgeria
  2. 2.Laboratoire de MathématiquesUniversité de Sidi Bel-AbbèsSidi Bel-AbbesAlgeria
  3. 3.Department of MathematicsUniversity of Tennessee at ChattanoogaChattanoogaUSA

Personalised recommendations