Integro-Differential Equations of Fractional Order
Original Research
First Online:
Abstract
In this paper, the authors present some results concerning the existence and uniqueness of solutions of an integro-differential equation of fractional order by using Banach’s contraction principle, Schauder’s fixed point theorem, and the nonlinear alternative of Leray–Schauder type.
Keywords
Integro-differential equation Left-sided mixed Riemann–Liouville integral of fractional order Caputo fractional-order derivative, solution Banach’s contraction principle Schauder’s fixed point theorem Nonlinear alternative of Leray–Schauder typePreview
Unable to display preview. Download preview PDF.
References
- 1.Abbas S., Benchohra M.: Darboux problem for perturbed partial differential equations of fractional order with finite delay. Nonlinear Anal. Hybrid Syst. 3, 597–604 (2009)MathSciNetMATHCrossRefGoogle Scholar
- 2.Abbas, S., Benchohra, M.: On the set of solutions of fractional order Riemann–Liouville integral inclusions. Demonstr Math (to appear)Google Scholar
- 3.Bielecki A.: Une remarque sur la méthod de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentilles ordinaries. Bull. Acad. Pol. Sci. Math. Phys. Astron. 4, 261–264 (1956)MathSciNetMATHGoogle Scholar
- 4.Burton T.A.: A fixed point theorem of Krasnosel’skii. Appl. Math. Lett. 11, 85–88 (1998)MathSciNetMATHCrossRefGoogle Scholar
- 5.Granas A., Dugundji J.: Fixed Point Theory. Springer-Verlag, New York (2003)MATHGoogle Scholar
- 6.Henry D.: Geometric Theory of Semilinear Parabolic Partial Differential Equations. Springer-Verlag, Berlin/New York (1989)Google Scholar
- 7.Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATHGoogle Scholar
- 8.Krasnosel’skii M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, New York (1964)Google Scholar
- 9.Mureşan, V. (ed): Functional-Integral Equations. Mediamira, Cluj-Napoca (2003)Google Scholar
- 10.Mureşan V.: Some results on the solutions of a functional-integral equation. Stud. Univ. Babes-Bolyai Math. 56, 157–164 (2011)MathSciNetGoogle Scholar
- 11.Pachpatte B.G.: On Fredholm type integrodifferential equation. Tamkang J. Math 39, 85–94 (2008)MathSciNetMATHGoogle Scholar
- 12.Pachpatte B.G.: Qualitative properties of solutions of certain Volterra type difference equations. Tamsui Oxf. J. Math. Sci. 26, 273–285 (2010)MathSciNetMATHGoogle Scholar
- 13.Podlubny I.: Fractional Differential Equation. Academic Press, San Diego (1999)Google Scholar
- 14.Rus I.A.: Picard operators and applications. Sc. Math. Japn. 58, 191–229 (2003)MathSciNetMATHGoogle Scholar
- 15.Tenreiro Machado J.A., Kiryakova V., Mainardi F.: A poster about the old history of fractional calculus. Fract. Calc. Appl. Anal. 13, 447–454 (2010)MathSciNetMATHGoogle Scholar
- 16.Vityuk A.N., Golushkov V.A.: Existence of solutions of systems of partial differential equations of fractional order. Nonlinear Oscil. 7, 318–325 (2004)MathSciNetCrossRefGoogle Scholar
Copyright information
© Foundation for Scientific Research and Technological Innovation 2012