Advertisement

Opial-type inequalities for diamond-alpha derivatives and integrals on time scales

  • Martin BohnerEmail author
  • Oktay Duman
Original Research

Abstract

In this article, we obtain various Opial-type inequalities on time scales via the notion of the diamond-alpha derivative which is a general concept covering both delta and nabla derivatives on time scales.

Keywords

Dynamic equation Opial’s inequality Time scale Delta derivative Nabla derivative Diamond-alpha derivative 

Mathematics Subject Classification (2000)

26D10 39A10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ravi P. Agarwal, Sharp Opial-type inequalities involving r-derivatives and their applications, Tohoku Math. J. (2), 47(4), 567–593, (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ravi P. Agarwal, Martin Bohner, and Allan Peterson, Inequalities on time scales: a survey, Math. Inequal. Appl., 4(4), 535–557, (2001)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Ravi P. Agarwal and Peter Y. H. Pang, Opial inequalities with applications in differential and difference equations, volume 320 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, (1995)Google Scholar
  4. 4.
    Ravi P. Agarwal and Peter Y. H. Pang, Remarks on the generalizations of Opial’s inequality, J. Math. Anal. Appl., 190(2), 559–577, (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    George A. Anastassiou, Opial type inequalities involving fractional derivatives of functions, Nonlinear Stud., 6(2), 207–230, (1999)zbMATHMathSciNetGoogle Scholar
  6. 6.
    George A. Anastassiou, Opial type inequalities involving functions and their ordinary and fractional derivatives, Commun. Appl. Anal., 4(4), 547–560, (2000)zbMATHMathSciNetGoogle Scholar
  7. 7.
    George A. Anastassiou, Opial type inequalities involving fractional derivatives of two functions and applications, Comput. Math. Appl., 48(10–11), 1701–1731, (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    George A. Anastassiou, Opial type inequalities for semigroups, Semigroup Forum, 75(3), 625–634, (2007)CrossRefMathSciNetGoogle Scholar
  9. 9.
    George A. Anastassiou, Opial type inequalities for cosine and sine operator functions, Semigroup Forum, 76(1), 149–158, (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    George A. Anastassiou, Riemann-Liouville fractional multivariate Opial type inequalities on spherical shells, Bull. Allahabad Math. Soc., 23, 65–140, (2008)zbMATHMathSciNetGoogle Scholar
  11. 11.
    George A. Anastassiou and Jerome A. Goldstein, Fractional Opial type inequalities and fractional differential equations, Results Math., 41(3-4), 197–212, (2002)zbMATHMathSciNetGoogle Scholar
  12. 12.
    George A. Anastassiou, J. J. Koliha, and Josip Pečarić, Opial inequalities for fractional derivatives, Dynam. Systems Appl., 10(3), 395–406, (2001)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Douglas Anderson, John Bullock, Lynn Erbe, Allan Peterson, and Hoainam Tran, Nabla dynamic equations on time scales, Panamer. Math. J., 13(1), 1–47, (2003)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Paul R. Beesack, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc., 104, 470–475, (1962)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Martin Bohner and Billûr Kaymakçalan, Opial inequalities on time scales, Ann. Polon. Math., 77(1), 11–20, (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Martin Bohner and Allan Peterson, Dynamic Equations on Time Scales, Birkhäuser Boston Inc., Boston, MA. An introduction with applications, (2001)zbMATHGoogle Scholar
  17. 17.
    Martin Bohner and Allan Peterson, Advances in Dynamic Equations on Time Scales. Birkhäuser Boston Inc., Boston, MA, (2003)zbMATHGoogle Scholar
  18. 18.
    K. M. Das, An inequality similar to Opial’s inequality, Proc. Amer. Math. Soc., 22, 258–261, (1969)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Xing Gang He, A short proof of a generalization on Opial’s inequality, J. Math. Anal. Appl., 182(1), 299–300, (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Stefan Hilger, Analysis on measure chains — a unified approach to continuous and discrete calculus, Results Math., 18, 18–56, (1990)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Wei-Cheng Lian, Shiueh-Ling Yu, Fu-Hsiang Wong, and Shang-Wen Lin, Nonlinear type of Opial’s inequalities on time scales, Int. J. Differ. Equ. Appl., 10(1), 101–111, (2005)zbMATHMathSciNetGoogle Scholar
  22. 22.
    C. L. Mallows, An even simpler proof of Opial’s inequality, Proc. Amer. Math. Soc., 16, 173, (1965)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Z. Opial, Sur une inégalité, Ann. Polon. Math., 8, 29–32, (1960)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Umut Mutlu Özkan, Mehmet Zeki Sarikaya, and Hüseyin Yildirim, Extensions of certain integral inequalities on time scales, Appl. Math. Lett., 21(10), 993–1000, (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    B. G. Pachpatte, On Opial-type integral inequalities. J. Math. Anal. Appl., 120(2), 547–556, (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    James W. Rogers, Jr. and Qin Sheng, Notes on the diamond-α dynamic derivative on time scales, J. Math. Anal. Appl., 326(1), 228–241, (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Qin Sheng, Hybrid approximations via second-order crossed dynamic derivatives with the ⋄α derivative. Nonlinear Anal. Real World Appl., 9(2), 628–640, (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Qin Sheng, M. Fadag, Johnny Henderson, and John M. Davis, An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal. Real World Appl., 7(3), 395–413, (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Fu-Hsiang Wong, Wei-Cheng Lian, Shiueh-Ling Yu, and Cheh-Chih Yeh, Some generalizations of Opial’s inequalities on time scales, Taiwanese J. Math., 12(2), 463–471, (2008)zbMATHMathSciNetGoogle Scholar

Copyright information

© Foundation for Scientific Research and Technological Innovation 2010

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMissouri University of Science and TechnologyRollaUSA

Personalised recommendations