Advertisement

International Journal of Plastics Technology

, Volume 22, Issue 2, pp 234–246 | Cite as

Thermal, electrical and characterization effects of graphene on the properties of low-density polyethylene composites

  • Maziyar Sabet
  • Hassan Soleimani
Research Article

Abstract

The logical outline and assembly of structural–functional materials are a progressive tendency of materials knowledge. The high specific surface areas and superior properties of graphene (Gr) spread in low-density polyethylene (LDPE) considerably improved the thermal stability and conductivity of LDPE/Gr composites. The electrical conductivity upgraded owing to the great thermal strength of Grs in LDPE matrix. Outstanding distribution of Grs was accomplished. LDPE/Gr composites were characterized by scanning electron microscopy, transmission electron microscope, Raman spectra, X-ray diffraction, thermogravimetric analyses and differential scanning calorimeter for studying the distribution, morphology and thermal strength of Gr composites. Results display that the presence of filler does not create an alteration in the microscopic structure of polymers. However, on a macroscopic scale, addition of Gr improved significantly the thermal and electrical properties of all LDPE/Gr compounds.

Keywords

Graphene Low-density polyethylene Composites 

References

  1. 1.
    Sabet M, Soleimani H, Seyednooroldin H (2016) Preparation and characterization of LDPE/CNT. Int J Adv Sci Eng Technol 4(2):154–160Google Scholar
  2. 2.
    Sabet M, Soleimani H, Seyednooroldin H (2016) Properties and characterization of ethylene–vinyl acetate filled with carbon nanotube. Polym Bull 73(2):419–434CrossRefGoogle Scholar
  3. 3.
    Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G (2011) Super-elastic Gr ripples for flexible strain sensors. ACS Nano 5:3645–3650PubMedCrossRefGoogle Scholar
  4. 4.
    Sabet M, Soleimani H (2017) the impact of electron beam irradiation on low density polyethylene and ethylene vinyl acetate. IOP Conf Ser Mater Sci Eng 204(1):012005CrossRefGoogle Scholar
  5. 5.
    Strupiński W, Grodecki K, Wysmołek A, Stepniewski R, Szkopek T, Gaskell PE, Gruneis A, Haberer D, Bozek R, Krupka J, Baranowski JM (2011) Gr epitaxy by chemical vapor deposition on SiC. Nano Lett 11:1786–1791PubMedCrossRefGoogle Scholar
  6. 6.
    Novoselov K, Fal’Ko V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for Gr. Nature 490:192–200PubMedCrossRefGoogle Scholar
  7. 7.
    Gajewski K, Kopiec D, Moczala M, Piotrowicz A, Zielony M, Wielgoszewski G, Gotszalk T, Strupiski W (2014) Scanning probe microscopy investigations of the electrical properties of chemical vapor deposited Gr grown on a 6H-SiC substrate. Micron 68:17–22PubMedCrossRefGoogle Scholar
  8. 8.
    Gajewski K, Goniszewski S, Szumska A, Kunicki MMAP, Gallop J, Klein N, Hao L, Gotszalk T (2016) Raman spectroscopy and Kelvin force probe microscopy characteristics of the CVD suspended Gr. Diam Relat Mater 64:27–33CrossRefGoogle Scholar
  9. 9.
    Kołodziejczyk Ł, Kula P, Szymański W, Atraszkiewicz R, Dybowski K, Pietrasik R (2016) Frictional behaviour of polycrystalline Gr grown on liquid metallic matrix. Tribol Int B 93:628–639CrossRefGoogle Scholar
  10. 10.
    Kula P, Pietrasik R, Dybowski K, Atraszkiewicz R, Szymański W, Kołodziejczyk Ł, Niedzielski P, Nowak D (2014) Single and multilayer growth of Gr from the liquid phase. Appl Mech Mater 510:8–12CrossRefGoogle Scholar
  11. 11.
    Kula P, Pietrasik R, Dybowski K, Atraszkiewicz R, Kaczmarek Ł, Szymanski W, Niedzielski P, Nowak D, Modrzyk W (2013) The growth of a polycrystalline Gr from a liquid phase. In: Technical proceedings of the 2013 NSTI nanotechnology conference and expo, NSTI-Nanotech 2013, vol 1, pp 210–212Google Scholar
  12. 12.
    Suzuki S, Lee C-C, Nagamori T, Schibli TR, Yoshimura M (2013) Nondegradative dielectric coating on Gr by thermal evaporation of SiO. Jpn J Appl Phys 52:125102CrossRefGoogle Scholar
  13. 13.
    Melitz W, Shen J, Kummel AC, Lee S (2011) Kelvin probe force microscopy and its application. Surf Sci Rep 66:1–27CrossRefGoogle Scholar
  14. 14.
    Sabet M, Hassan A, Ratnam CT (2015) Properties of ethylene–vinyl acetate filled with metal hydroxide. J Elastom Plast 47:88–100CrossRefGoogle Scholar
  15. 15.
    Panchal V, Pearce R, Yakimova R, Tzalenchuk A, Kazakova O (2013) Standardization of surface potential measurements of Gr domains. Sci Rep 3:2597PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Frank O, Vejpravova J, Holy V, Kavan L, Kalbac M (2014) Interaction between Gr and copper substrate: the role of lattice orientation. Carbon 68:440–451CrossRefGoogle Scholar
  17. 17.
    Sabet M, Soleimani H (2014) Electron-beam radiation of halogen free flame retardant polymers for wire and cable applications. Appl Mech Mater 625:29–33CrossRefGoogle Scholar
  18. 18.
    Ferrari A, Basko D (2013) Raman spectroscopy as a versatile tool for studying the properties of Gr. Nat Nanotechnol 8:235–246PubMedCrossRefGoogle Scholar
  19. 19.
    Wang R, Wang S, Zhang D, Li Z, Fang Y, Qiu X (2011) Control of carrier type and density in exfoliated Gr by interface engineering. ACS Nano 5:408–412PubMedCrossRefGoogle Scholar
  20. 20.
    Zhu W, Low T, Perebeinos V, Bol AA, Zhu Y, Yan H, Tersoff J, Avouris P (2012) Structure and electronic transport in Gr wrinkles. Nano Lett 12:3431–3436PubMedCrossRefGoogle Scholar
  21. 21.
    Ochedowski O, Bußmann B, Schleberger M (2014) Gr on mica-intercalated water trapped for life. Sci Rep 4:6003PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bußmann BK, Ochedowski O, Schleberger M (2011) Doping of Gr exfoliated on SrTiO3. Nanotechnology 22:265703PubMedCrossRefGoogle Scholar
  23. 23.
    Suk JW, Lee WH, Lee J, Chou H, Piner RD, Hao Y, Akinwande D, Ruoff RS (2013) Enhancement of the electrical properties of Gr grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett 13:1462–1467PubMedCrossRefGoogle Scholar
  24. 24.
    Ji S-H, Hannon J, Tromp R, Perebeinos V, Tersoff J, Ross F (2012) Atomic-scale transport in epitaxial Gr. Nat Mater 11:114–119CrossRefGoogle Scholar
  25. 25.
    Melios C, Panchal V, Giusca C, Strupiński W, Silva S, Kazakova O (2015) Carrier type inversion in quasi-free standing Gr: studies of local electronic and structural properties. Sci Rep 5:10505PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Gr-based materials: synthesis, characterization, properties and applications. Small 18:1876–1902CrossRefGoogle Scholar
  27. 27.
    Das TK, Prusty S (2013) Gr-based polymer composites and their applications. Polym Plast Technol Eng 52(4):319–331CrossRefGoogle Scholar
  28. 28.
    Kausar A, Wajid-Ullah, Muhammad B, Siddiq M (2015) Influence of processing technique on the physical properties of modified polystyrene/exfoliated graphite nanocomposites. Mater Manuf Process 30:346–355CrossRefGoogle Scholar
  29. 29.
    Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Gr polymer nanocomposites for structural and functional applications. Prog Polym Sci 39(11):1934–1972CrossRefGoogle Scholar
  30. 30.
    Du J, Cheng HM (2012) The fabrication, properties and uses of Gr/polymer composites. Macro Mol Chem Phys 213:1060–1077CrossRefGoogle Scholar
  31. 31.
    Sun Y, Shi G (2013) Gr/polymer composites for energy applications. J Polym Sci Part B Polym Phys 51:231–253CrossRefGoogle Scholar
  32. 32.
    Ahmadi-Moghadam B, Sharafimasooleh M, Shadlou S, Taheri F (2015) Effect of functionalization of Gr nanoplatelets on the mechanical response of Gr/epoxy composites. Mater Des 66:142–149CrossRefGoogle Scholar
  33. 33.
    Pan Y, Hong N, Zhan J, Wang B, Song L, Hu Y (2014) Effect of Gr on the fire and mechanical performances of glass fiber-reinforced polyamide 6 composites containing aluminum hypophosphite. Polym Plast Technol Eng 53(4):1467–1475CrossRefGoogle Scholar
  34. 34.
    Fim FDC, Basso NRS, Graebin AP, Azambuja DS, Galland GB (2013) Thermal, electrical, and mechanical properties of polyethylene-Gr nanocomposites obtained by in situ polymerization. J Appl Polym Sci 128:2630–2637CrossRefGoogle Scholar
  35. 35.
    Zhu X, Xie T, Mo Z, Zho G, Zhang C, Guo R (2015) Fabrication of polyaniline/Gr/Tb3þ conductive composite. Mater Manuf Process 30(3):335–339CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Li D, Tan X, Zhang B, Ruan X, Liu H, Pan C, Liao L, Zhai T, Bando Y, Chen S (2013) High quality Gr sheets from Gr oxide by hot-pressing. Carbon 54:143–148CrossRefGoogle Scholar
  37. 37.
    Grandthyll S, Gsell S, Weini M, Schreck M, Hufner S, Muller F (2012) Epitaxial growth of Gr on transition metal surfaces: chemical vapor deposition versus liquid phase deposition. J Phys Condens Matter 24:314204PubMedCrossRefGoogle Scholar
  38. 38.
    Dang DK, Kim EJ (2015) Solvo thermal-assisted liquid-phase exfoliation of graphite in a mixed solvent of toluene and oleylamine. Nanoscale Res Lett 10:6PubMedCentralCrossRefGoogle Scholar
  39. 39.
    Wang Y, Yu J, Dai W, Song Y, Wang D, Zeng L, Jinang N (2015) Enhanced thermal and electrical properties of epoxy composites reinforced with Gr nanoplatelets. Polym Compos 36:556–565CrossRefGoogle Scholar
  40. 40.
    Dimiev AM, Ceriotti G, Metzger A, Kim ND, Tour JM (2016) Chemical mass production of Gr nanoplatelets in ~ 100% yield. ACS Nano 10:274–279PubMedCrossRefGoogle Scholar
  41. 41.
    Truong QT, Pokharel P, Song GS, Lee DS (2012) Preparation and characterization of Gr nanoplatelets from natural graphite via intercalation and exfoliation with tetra alkyl ammonium bromide. Nano Sci Nano Technol 12(5):4305–4308CrossRefGoogle Scholar
  42. 42.
    Derry C, Wu Y, Gardner S, Zhu S (2014) Gr nanoplatelets prepared by electric heating acid-treated graphite in a vacuum chamber and their use as additives in organic semiconductors. Appl Mater Interfaces 6:20269–20275CrossRefGoogle Scholar
  43. 43.
    Kim H, Kobayashi S, Abdur Rahim MA, Zhang MJ, Khusainova A, Hillmyer MA, Abdala AA (2011) Gr/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer 52:1837–1846CrossRefGoogle Scholar
  44. 44.
    Al Maadeed MA, Ouederni M, Noorunnisa Khanam P (2013) Effect of chain structure on the properties of glass fibre/polyethylene composites. Mater Des 47:725–730CrossRefGoogle Scholar
  45. 45.
    Farahbakhsh N, Roodposhti PS, Ayoub A, Venditti RA, Jur JS (2015) Melt extrusion of poly ethylene nanocomposites reinforced with nanofibrillated cellulose from cotton and wood sources. J Appl Polym Sci 132(17):41857CrossRefGoogle Scholar
  46. 46.
    Armstrong G (2015) An introduction to polymer nanocomposites. Eur J Phys 36:063001CrossRefGoogle Scholar
  47. 47.
    Ardekani SM, Dehghani A, AlMaadeed MA, Wahit MU, Hassan A (2014) Mechanical and thermal properties of recycled poly(ethylene terephthalate) reinforced newspaper fiber composites. Fibers Polym 15:1531–1538CrossRefGoogle Scholar
  48. 48.
    Sridhar V, Lee I, Chun HH, Park H (2013) Gr reinforced biodegradable poly (3-hydroxy-butyrate-co-4-hydroxybutyrate) nano composites. Express Polym Lett 7:320–328CrossRefGoogle Scholar
  49. 49.
    El Achaby M, Arrakhiz FE, Vaudreuil S, el Kacem Qaiss A, Bousmina M, Fassi-Fehri O (2012) Mechanical, thermal, and rheological properties of Gr-based polypropylene nanocomposites prepared by melt mixing. Polym Compos 33(5):733–744CrossRefGoogle Scholar
  50. 50.
    Zhou K, Yang W, Tang G, Wang B, Jiang S, Yuan H, Gui Z (2013) Comparative study on the thermal stability, flame retardancy and smoke suppression properties of polystyrene composites containing molybdenum disulfide and Gr. RSC Adv 3:25030–25040CrossRefGoogle Scholar
  51. 51.
    Qi XY, Yan D, Jiang Z, Cao YK, Yu ZZ, Yavari F, Koratkar N (2011) Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low Gr content. ACS Appl Mater Interfaces 3:3130–3133PubMedCrossRefGoogle Scholar
  52. 52.
    Zha JW, Zhu TX, Wu YH, Wang SJ, Li RK, Dang ZM (2015) Tuning of thermal and dielectric properties for epoxy composites filled with electrospun alumina fibers and Gr nanoplatelets through hybridization. J Mater Chem C 3:7195–7202CrossRefGoogle Scholar
  53. 53.
    Zhou T, Wang X, Cheng P, Wang T, Xiong D, Wang X (2013) Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide micro particles. Express Polym Lett 7(7):585–594CrossRefGoogle Scholar
  54. 54.
    Ren P-G, Di Y-Y, Zhang Q, Li L, Pang H, Li Z-M (2012) Composites of ultrahigh-molecular-weight polyethylene with Gr sheets and/or MWCNTs with segregated network structure: preparation and properties. Macromol Mater Eng 297:437–443CrossRefGoogle Scholar
  55. 55.
    Sabet M, Hassan A, Wahit MU, Ratnam CT (2010) Mechanical, electrical and thermal properties of irradiated ethylene vinyl acetate by electron-beam. J Polym Plast Technol Eng 49(6):589–594CrossRefGoogle Scholar
  56. 56.
    Lahiri D, Dua R, Zhang C, Novoa IS, Bhat A, Ramaswamy S, Agarwal A (2012) Gr nanoplatelet induced strengthening of ultra high molecular weight polyethylene and bio-compatibility In Vitro. ACS Appl Mater Interfaces 4(4):2234–2241PubMedCrossRefGoogle Scholar
  57. 57.
    Oleksy M, Szwarc-Rzepka K, Heneczkowski M, Oliwa R, Jesionowski T (2014) Epoxy resin composite based on functional hybrid fillers. Materials 7(8):6064–6091PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    AlMaadeed MA, Labidi S, Krupa I, Ouederni M (2015) Effect of waste wax and chain structure on the mechanical and physical properties of polyethylene. Arab J Chem 8:388–399CrossRefGoogle Scholar
  59. 59.
    Noorunnisa Khanam P, Al Maadeed MA (2015) Processing and characterization of polyethylene-based composites. Adv Manuf Polym Compos Sci 1:63–79Google Scholar
  60. 60.
    Noorunnisa Khanam KN, Al-Maadeed MA (2014) Improvement of ternary recycled polymer blend reinforced with date palm fibre. Mater Des 60:532–539CrossRefGoogle Scholar
  61. 61.
    Ferg EE, Bolo LL (2013) A correlation between the variable melt flow index and the molecular mass distribution of virgin and recycled polypropylene used in the manufacturing of battery cases. Polym. Test 32:1452–1459CrossRefGoogle Scholar
  62. 62.
    Teuber L, Militz H, Krause A (2016) Processing of wood plastic composites: the influence of feeding method and polymer melt flow rate on particle degradation. J Appl Polym Sci.  https://doi.org/10.1002/app.43231 CrossRefGoogle Scholar
  63. 63.
    Sabet M, Soleimani H, Hassan A, Ratnam CT (2014) Electron-beam radiation of LDPE filled with calcium carbonate and metal hydroxides. J Polym Plast Technol Eng 53:1362–1366CrossRefGoogle Scholar
  64. 64.
    Sabet M, Soleimani H, Hassan A, Ratnam CT (2013) Effects of addition, calcium stearate and metal hydroxides on the properties of irradiated LDPE/EVA blends. J Polym Eng.  https://doi.org/10.1515/polyeng-2013-0058 CrossRefGoogle Scholar
  65. 65.
    Sabet M, Savory RM, Hassan A, Ratnam CT (2013) The effect of TMPTMA addition on electron-beam irradiated LDPE, EVA and blend properties. Int Polym Process 28:386–392CrossRefGoogle Scholar
  66. 66.
    Sabet M, Hassan A, Ratnam CT (2013) Electron-beam radiation of low density polyethylene/ethylene vinyl acetate blends. J Polym Eng 33(2):149–161CrossRefGoogle Scholar
  67. 67.
    Sabet M, Anuwar MSB (2013) Calcium stearate and alumina trihydrate addition of irradiated LDPE, EVA and blends with electron-beam. J Adv Mater Res Appl Mech Mater 290:31–37Google Scholar
  68. 68.
    Sabet M, Hassan A, Ratnam CT (2013) Effect of zinc borate on flammability/thermal properties of ethylene vinyl acetate filled with metal hydroxides. J Reinf Plast Compos 32(15):1122–1128CrossRefGoogle Scholar
  69. 69.
    Hsia B, Ferralis N, Senesky DG, Pisano AP, Carraro C, Maboudian R (2011) Epitaxial Gr growth on 3C-SiC(111)/AlN(0001)/Si(100). Electrochem Solid State Lett 14(2):k13–15CrossRefGoogle Scholar
  70. 70.
    Sabet M, Hassan A, Ratnam CT (2012) Electron-beam radiation of low density polyethylene/ethylene vinyl acetate filled with metal hydroxides for wire and cable applications. J Polym Degrad Stab 97:1432–1437CrossRefGoogle Scholar
  71. 71.
    Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Effect of functionalized Gr on the physical properties of linear low density polyethylene nanocomposites. Polym Test 31(1):31–38CrossRefGoogle Scholar
  72. 72.
    Sabet M, Hassan A, Ratnam CT (2015) Properties of ethylene–vinyl acetate filled with metal hydroxide. J Elastom Plast 47(1):88–100CrossRefGoogle Scholar
  73. 73.
    Sabet M, Hassan A, Ratnam CT (2012) Mechanical, electrical and thermal properties of irradiated low density poly ethylene by electron-beam. J Polym Bull 68:2323–2339CrossRefGoogle Scholar
  74. 74.
    Kuila T, Khanra P, Mishra AK, Kim NH, Lee JH (2012) Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Polym Test 31(2):282–289CrossRefGoogle Scholar

Copyright information

© Central Institute of Plastics Engineering & Technology 2018

Authors and Affiliations

  1. 1.Petroleum and Chemical Engineering ProgrammeUniversiti Teknologi Brunei (UTB)Bandar Seri BegawanBrunei Darussalam
  2. 2.Department of Fundamental and Applied Sciences, Faculty of Science and Information TechnologyUniversiti Teknologi PETRONAS (UTP)Bandar Seri Iskandar, IpohMalaysia

Personalised recommendations