Elaboration of properties of graphene oxide reinforced epoxy nanocomposites

  • Pravin Bari
  • Samrin Khan
  • James Njuguna
  • Satyendra MishraEmail author
Research Article


In this research work, properties of graphene oxide (GO) based epoxy nanocomposites, prepared via the solution blending method, are elaborated. Different loadings (0.1–0.5 wt%) of GO were added into epoxy resin, and their effects were studied on their surface reaction, morphology, mechanical and thermal properties. It was found that a chemical modification, layer expansion and dispersion of filler within the epoxy matrix resulted in an improved interface bonding between the GO and epoxy matrix. The optimum amount of graphene nanostructures can be useful to improve the properties of epoxy nanocomposites for applications in adhesives to automotive.


Graphene Epoxy Nanocomposites Preparation Mechanical and thermal properties 



Authors are thankful to DST, Govt. of India and UKIERI, British Council for providing financial assistance (Project No. DST/INT/UK/P-108/2014) to carry out this research work.


  1. 1.
    Kim HS, Abdala AA, Macosko WC (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515CrossRefGoogle Scholar
  2. 2.
    Sun Y, Shi G (2013) Graphene/polymer composites for energy applications. J Polym Sci B Polym Phys 51:231CrossRefGoogle Scholar
  3. 3.
    Zhao X, Zhang Q, Chen D (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRefGoogle Scholar
  4. 4.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3): 902–907CrossRefGoogle Scholar
  5. 5.
    Tung TT, Karunagaran R, Tran DNH et al (2016) Engineering of graphene/epoxy nanocomposites with improved distribution of graphene nanosheets for advanced piezo-resistive mechanical sensing. J Mater Chem C 4:3422CrossRefGoogle Scholar
  6. 6.
    Min K, Aluru NR (2011) Mechanical properties of graphene under shear deformation. Appl Phys Lett 98:013113CrossRefGoogle Scholar
  7. 7.
    Qi B, Lu SR, Xiao XE, Pan LL, Tan FZ, Yu JH (2014) Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide. Express Polym Lett 8(7):467–479CrossRefGoogle Scholar
  8. 8.
    Hansora DP, Shimpi NG, Mishra S (2015) Graphite to graphene via graphene oxide: an overview on synthesis, properties, and applications. JOM 67(12):2855–2868CrossRefGoogle Scholar
  9. 9.
    Rana VK, Choi MC, Kong JY, Kim GY, Kim MJ, Kim SH, Mishra S, Singh RP, Ha CS (2011) Synthesis and drug delivery behavior of chitosan functionalized graphene oxide hybrid nano sheets. Macromol Mater Eng 296(2):131CrossRefGoogle Scholar
  10. 10.
    Rana VK, Akhtar S, Chatterjee S, Mishra S, Singh RP, Ha CS (2014) Chitosan and Chitosan-Co-Poly (ε-Caprolactone) grafted multiwalled carbon nanotube transducers for vapour sensing. J Nanosci Nanotechnol 14(3):2425–2435CrossRefGoogle Scholar
  11. 11.
    Jain R, Mishra S (2016) Electrical and electrochemical properties of graphene modulated through surface functionalisation. RSC Adv 6:27404–27415CrossRefGoogle Scholar
  12. 12.
    Liu Z, Wang Y, Zhang X, Xu Y, Chen Y, Tian J (2009) Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl Phys Lett 94:021902CrossRefGoogle Scholar
  13. 13.
    Khobaragade PS, Hansora DP, Naik JB, Njuguna J, Mishra S (2016) Preparation and analyasis of multilayer hybrid nanostructures. Appl Clay Sci 132–133:668–674CrossRefGoogle Scholar
  14. 14.
    Shimpi NG, Mishra S, Hansora DP, Savdekar U (2013) Indian Patent 3179/MUM/2013.
  15. 15.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814CrossRefGoogle Scholar
  16. 16.
    Paulchamy B, Arthi G, Paulchamy Lignesh BD et al (2015) A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol. doi: 10.4172/2157-7439.1000253 Google Scholar
  17. 17.
    Jung I, Dikin DA, Piner RD, Ruoff RS (2008) Tunable electrical conductivity of individual graphene oxide sheets reduced at low temperatures. Nano Lett 8:4283CrossRefGoogle Scholar
  18. 18.
    Silva LCO, Silva GG, Ajayan PM, Soares BG (2015) Long-term behavior of epoxy/graphene-based composites determined by dynamic mechanical analysis. J Mater Sci 50:6407–6419CrossRefGoogle Scholar
  19. 19.
    Sharmila BTK, Nair AB, Abraham BT, Beegum SPM, Thachil ET (2014) Polymer 55:3614–3627CrossRefGoogle Scholar
  20. 20.
    Bari P, Lanjewar S, Hansora DP, Mishra S (2016) Influence of the coupling agent and graphene oxide on the thermal and mechanical behavior of tea dust–polypropylene composites. J Appl Polym Sci 133:3614–3627CrossRefGoogle Scholar
  21. 21.
    Wojtoniszak M, Mijowska E (2012) Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale. J Nanopart Res 14:1248CrossRefGoogle Scholar
  22. 22.
    Loryuenyong V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A (2013) Preparation and characterization of reduced graphene oxide sheets via water based Exfoliation and reduction method. Adv Mater Eng. doi: 10.1155/2013/923403 Google Scholar
  23. 23.
    Hong Y, Wang Z, Ji X (2013) Sulfuric acid intercalated graphite oxide for graphene preparation. Sci Rep 3:3439CrossRefGoogle Scholar
  24. 24.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRefGoogle Scholar
  25. 25.
    Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials Past, Present and future. Prog Mater Sci 56:1178–1271CrossRefGoogle Scholar
  26. 26.
    Li Z, Wang R, Young R, Deng L, Yang F, Hao L, Giao W, Liu W (2013) Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer 54(23):6437–6446CrossRefGoogle Scholar
  27. 27.
    Vlassiouk I, Fulvio P, Meyer H, Lavrik N, Dai S, Datskos P, Smirnov S (2013) Large scale atmospheric pressure chemical vapour deposition of graphene. Carbon 54:58–67CrossRefGoogle Scholar
  28. 28.
    Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113:4257–4259CrossRefGoogle Scholar
  29. 29.
    Mao HY, Lau YH, Lin JD, Zhong S, Wee A, Chen W (2013) Manipulating the electronic and chemical properties of graphene via molecular functionalisation. Prog Surf Sci 88:132–159CrossRefGoogle Scholar
  30. 30.
    Shimpi NG, Hansora DP, Yadav R, Mishra S (2015) Performance of hybrid nanostructured conductive cotton threades as LPG sensor at ambient temperature: preparation and analysis. RSC Adv 5:99253–99269CrossRefGoogle Scholar
  31. 31.
    Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C (2012) Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 1:30–49CrossRefGoogle Scholar
  32. 32.
    Yoonessi M, Shi Y, Scheiman DA, Colon ML, Tigelaar DM, Weiss RA, Meador MA (2012) ACS Nano 6(9):7644CrossRefGoogle Scholar
  33. 33.
    Khobragade PS, Hansora DP, Naik JB, Njuguna J, Mishra S (2017) Effect of multilayered nanostructures on the physico-mechanical properties of ethylene vinyl acetate-based hybrid nanocomposites. Polym Compo. doi: 10.1002/pc.24371 Google Scholar
  34. 34.
    Khobragade PS, Hansora DP, Naik JB, Njuguna J, Mishra S (2017) Physico-mechanical properties of nano polystyrene (nPS) decorated graphene oxide (GO)-epoxy composites. Polym Inte. doi: 10.1002/pi.5392 Google Scholar
  35. 35.
    Hawkins DA Jr, Haque A (2014) Fracture toughness of carbon-graphene/epoxy hybrid nanocomposites. Proc Eng 90:176–181CrossRefGoogle Scholar
  36. 36.
    Hawkins DA Jr, Haque A (2015) Strain energy release rate and mode-I delamination growth in carbon-graphene/epoxy hybrid nanocomposites. Proc Eng 105:829–834CrossRefGoogle Scholar
  37. 37.
    Lee SY, Chong MH, Park M, Kim HY, Park SJ (2014) Effect of chemically reduced graphene oxide on epoxy nanocomposites for flexural behaviors. Carbon Lett 15(1):67–70CrossRefGoogle Scholar
  38. 38.
    Ribeiro H, Silva WM, Rodrigues MTF, Neves JC, Paniago R, Fantini C, Calado HDR, Seara LM, Silva GG (2013) Multifunctional nanocomposites based on tetraethelenepentamine modified graphene oxide/epoxy. J Mater Sci 48:7883–7892CrossRefGoogle Scholar
  39. 39.
    Zaman I, Manshoor B, Khalid A, Meng Q, Araby S (2014) Influence of interface on epoxy/clay nanocomposites: mechanical and thermal dynamic properties. J Mater Sci 49:5856–5865CrossRefGoogle Scholar
  40. 40.
    Qi B, Yuan Z, Lu S, Liu K, Li S, Yang L, Yu J (2014) Mechanical and thermal properties of epoxy composites containing graphene oxide and liquid crystalline epoxy. Fiber Polym 15(2):326–333CrossRefGoogle Scholar
  41. 41.
    Mishra S, Verma J (2016) Thermal decomposition kinetics of silane treated wood: PVC microcellular composites. Int J Plast Technol 20(1):93–105CrossRefGoogle Scholar
  42. 42.
    Mishra S, Verma J (2016) Effect of treatment of Tio2 on thermal decomposition kinetics of wood: PVC microcellular composites, Int J Plast Technol. doi: 10.1007/s12588-016-9165-0
  43. 43.
    Mishra S, Shimpi NG, Mali AD (2011) Influence of stearic acid treated nano-CaCO3 on the properties of silicone nanocomposites. J Polym Res 18:1715–1724CrossRefGoogle Scholar

Copyright information

© Central Institute of Plastics Engineering & Technology 2017

Authors and Affiliations

  1. 1.University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaonIndia
  2. 2.School of EngineeringRobort Gorden UniverstyAberdeenUK

Personalised recommendations