Delamination fracture toughness of continuous glass-fiber/epoxy composites for structural applications

  • D. Treber
  • B. Haspel
  • P. Elsner
  • K. A. Weidenmann
Research Article


This paper presents experimental results of delamination fracture toughness tests on glass-fiber/epoxy composites which are manufactured in a novel Compression Resin transfer molding (CRTM) process in comparison to the performance of a well-studied RTM reference process. The examined laminates are built out of six plies, with a plain weave fiber orientation. 90% of the fibers are in longitudinal direction and 10% are perpendicular woven in. The influence of the process regarding interlaminar fracture toughness is tested under pure mode I (DCB), pure mode II (ENF) and mixed mode loading (MMB). The aim of this study is to establish a semi-empirical criterion to derive the interlaminar fracture toughness of all mixed-mode ratios using the pure mode I or II loading fracture toughnesses. It has been found, that the materials performance for both processes are comparable, however the fracture behavior is strongly influenced by the fabric structure. The examination of the laminates polymer system showed a strong R-curve behavior for mode I and mode II loading. It was possible to establish a semi empirical criterion that shows good agreement with the experimental results.


RTM Compression RTM Mixed mode Strain energy release rate 



The authors gratefully acknowledge Dr. Raman Chaudhari for the manufacture of the RTM panels at the Fraunhofer ICT. They also appreciate the financial support from the KITe hyLITE innovation cluster funded by the Fraunhofer Gesellschaft, the Karlsruhe Institute of Technology and the state of Baden-Württemberg.


  1. 1.
    Friedrich K (ed) (1989) Application of fracture mechanics to composite materials. Elsevier Science Publishers B.V, AmsterdamGoogle Scholar
  2. 2.
    Sela N, Ishai O (1989) Interlaminar fracture toughness and toughening of laminated composite materials: a review. Composites 20(5):423–435CrossRefGoogle Scholar
  3. 3.
    Davies P, Blackman BRK, Brunner AJ (1998) Standard test methods for delamination resistance of composite materials: current status. Appl Compos Mater 5(6):345–364CrossRefGoogle Scholar
  4. 4.
    Whitney JM, Browning CE, Hoogsteden W (1982) A double cantilever beam test for characterizing Mode I delamination of composite materials. J Reinf Plast Compos 1(4):297–313CrossRefGoogle Scholar
  5. 5.
    Hashemi S, Kinloch AJ, Williams JG (1989) Corrections needed in double- cantilever beam tests for assessing the interlaminar failure of fibre composites. J Mater Sci Lett 8(2):125–129CrossRefGoogle Scholar
  6. 6.
    Davies P, Benzeggagh ML (1989) Interlaminar Mode-I fracture testing. In: Friedrich K (ed) Application of fracture mechanics to composite materials. Elsevier Science Publisher B.V, Amsterdam, pp 81–112CrossRefGoogle Scholar
  7. 7.
    Carlsson LA, Gillespie JW Jr, Pipes RB (1986) On the analysis and design of the end notched flexure (ENF) specimen for Mode II testing. J Compos Mater 20(6):594–604CrossRefGoogle Scholar
  8. 8.
    Carlsson LA, Gillespie JW Jr (1989) Mode-II interlaminar fracture of composites. In: Friedrich K (ed) Application of fracture mechanics to composite materials. Elsevier Science Publisher B.V, Amsterdam, pp 113–157CrossRefGoogle Scholar
  9. 9.
    Reeder JR, Crews JRJ (1990) Mixed- mode bending method for delamination testing. AIAA J 28(7):1270–1276CrossRefGoogle Scholar
  10. 10.
    Benzeggagh ML, Kenane M (1996) Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos Sci Technol 56(4):439–449CrossRefGoogle Scholar
  11. 11.
    Hashemi S, Kinloch AJ, Williams JG (1990) Mechanics and mechanisms of delamination in a poly(ether sulphone)- fibre composite. Compos Sci Technol 37(4):429–462CrossRefGoogle Scholar
  12. 12.
    Szekrenyes A, Uj J (2005) Mode-II fracture in E-glass-polyester composite. Compos Mater 39(19):1747–1768CrossRefGoogle Scholar
  13. 13.
    Hashemi S, Kinloch AJ, Williams JG (1990) The effects of geometry, rate and temperature on the Mode I, Mode II and mixed-Mode I/II interlaminar fracture of carbon- fibre/poly(ether-ether ketone) composites. J Compos Mater 24(9):918–956CrossRefGoogle Scholar
  14. 14.
    Martin RH (1997) Delamination characterization of woven glass/polyester composites. J Compos Technol Res 19(1):20–28CrossRefGoogle Scholar
  15. 15.
    Alif N, Carlsson LA, Gillespie JWJ (1997) Mode I, Mode II, and mixed mode interlaminar fracture of woven fabric carbon/epoxy. In: Hopper SJ (ed) Composite materials: testing and design, thirteenth volume, ASTM STP 1242, 13th edn. American Society for Testing and Materials, West Conhocken, pp 82–106CrossRefGoogle Scholar
  16. 16.
    Potter K (1997) Resin transfer moulding. Chapman & Hall, LondonCrossRefGoogle Scholar
  17. 17.
    Young W-B, Chiu C-W (1995) Study on compression transfer molding. J Compos Mater 29(16):2180–2191CrossRefGoogle Scholar
  18. 18.
    Gong X-J, Benzeggagh M (1995) Mixed mode interlaminar fracture toughness of unidirectional glass/epoxy composite. In: Martin RH (ed) Composite materials: fatigue and fracture—fifth volume, ASTM STP 1230. American Society for Testing and Materials, Philadelphia, pp 100–123Google Scholar
  19. 19.
    DIN EN 6033 (1996) Determination of interlaminar fracture toughness energy-Mode I-GIC. Beuth-Verlag, BerlinGoogle Scholar
  20. 20.
    DIN EN 6034 (1996) Determination of interlaminar fracture toughness energy-Mode II-GIIC. Beuth-Verlag, BerlinGoogle Scholar
  21. 21.
    ASTM D 6671/D 6671M-06 (2006) Standard test method for mixed Mode I-Mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites. American Society for Testing and Materials, PhiladelphiaGoogle Scholar
  22. 22.
    Friedrich K (1989) Fractographic analysis of polymer composites. In: Friedrich K (ed) Application of fracture mechanics to composite materials. Elsevier Science Publisher B.V, Amsterdam, pp 425–487CrossRefGoogle Scholar
  23. 23.
    Davies P, Moore DR (1990) Glass/Nylon-6.6 composites: delamination resistance testing. Compo Sci Technol 38(3):211–227CrossRefGoogle Scholar
  24. 24.
    Starke C, Beckert W, Lauke B (1996) Characterization of the delamination behaviour of composites under mode I- and mode II-loading. Mater Sci Eng Technol 27(2):80–89Google Scholar
  25. 25.
    Reeder JR (2003) A criterion to control nonlinear error in the mixed-mode bending test. In: Bakis CE (ed) Composite materials: testing and design fourteenth volume, ASTM STP 1436. ASTM International, West Conshohocken, pp 349–371CrossRefGoogle Scholar
  26. 26.
    Bradley WL (1989) Relationship of matrix toughness to interlaminar fracture toughness. In: Friedrich K (ed) Application of fracture mechanics to composite materials. Elsevier Science Publisher B.V, Amsterdam, pp 159–187CrossRefGoogle Scholar
  27. 27.
    Hine PJ, Brew B, Duckett RA, Ward IM (1989) Failure mechanisms in continuous carbon-fibre reinforced PEEK composites. Compos Sci Technol 35(1):31–51CrossRefGoogle Scholar
  28. 28.
    Kotaki M, Hamada H (1997) Effect of interfacial properties and weave structure on mode I interlaminar fracture behaviour of glass satin woven fabric composites. Compos A Appl Sci Manuf 28(3):257–266CrossRefGoogle Scholar
  29. 29.
    Haspel B, Hoffmann C, Elsner P, Weidenmann K (2015) Characterization of the interfacial shear strength of glass-fiber reinforced polymers made from novel RTM processes. Int J Plast Technol 19(1):333–346CrossRefGoogle Scholar
  30. 30.
    Alif N, Carlsson LA, Boogh L (1998) The effect of weave pattern and crack propagation direction on mode I delamination resistance of woven glass and carbon composites. Compos B Eng 29(5):603–611CrossRefGoogle Scholar
  31. 31.
    Björk Å (1996) Numerical methods for least squares problems. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar

Copyright information

© Central Institute of Plastics Engineering & Technology 2016

Authors and Affiliations

  • D. Treber
    • 1
  • B. Haspel
    • 1
  • P. Elsner
    • 1
  • K. A. Weidenmann
    • 1
  1. 1.Institute for Applied Materials (IAM–WK)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations