Orogenic Movements during the Paleozoic Period: Development of the Granitoid Formations in the Northwestern Region of Spain’s Iberian Peninsula

  • Juan Ramon Vidal RomaníEmail author
  • Zhaojun Song
  • Huimin Liu
  • Yifang Sun
  • Haonan Li


In the present study, Paleozoic Variscan orogenesis was a model of the oroclinal flexion accompanied by extensive magmatism, which could be divided into the following two types: post-tectonic and syn-tectonic tonalite granite, and leuco-granite which were controlled by the tectonic characteristics of the intrusions. It was observed that a very high majority of the samples had displayed discontinuities in their structures, that were later utilized to define the granitoid morphology and development characteristics of the rock during the intrusion phases. Furthermore, it was determined that the tectonics associated with the Alpine orogeny results in the new generation of faults and fractures during the Paleogene Period had produced the development of the Sierras. Due to different weathering processes, the depressions which had resulted in the present granitoid reliefs were found to be exclusively related to the structural development processes during the geological history (either tectonic or magmatic) of the granite, and not as normally interpreted.

Key Words

granitoid geomorphology endogenous forms exogenous forms intrusive structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 41472155, 41876037), the Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology (No. MGQNLM201902), the Scientific and Technological Innovation Project from the China Ocean Mineral Resources R & D Association (No. DY135-N2-1-04). The final publication is available at Springer via {rs||url|}.

References Cited

  1. Ahmed, H. A., Ma, C. Q., Wang, L. X., et al., 2018. Petrogenesis and Tectonic Implications of Peralkaline A-Type Granites and Syenites from the Suizhou-Zaoyang Region, Central China. Journal of Earth Science, 29(5): 1181–1202. CrossRefGoogle Scholar
  2. Auréjac, J. B., Gleizes, G., Diot, H., et al., 2004. Le Complexe Granitique de Quérigut (Pyrénées, France) Ré-examiné par la Technique de l’Asmun Pluton Syntectonique de la Transpression Dextre Hercynienne. Bulletin Societé Géologique de France, 175(2): 157–174. (in Spanish)CrossRefGoogle Scholar
  3. Badgley, P., 1965. Structural Tectonic Principles. Harper's Geoscience Series, New YorkGoogle Scholar
  4. Bensimon, D., Kadanoff, L. P., Liang, S. D., et al., 1986. Viscous Flows in Two Dimensions. Reviews of Modern Physics, 58(4): 977–999. CrossRefGoogle Scholar
  5. Bremer, H., Jennings, J. N., 1978. Inselbergs/Inselberge. Zeitschrift für Geomorphologie Supplement Band. 31 (in Spanish)Google Scholar
  6. Brook, G. A., 1978. A New Approach to the Study of Inselberg Landscapes. Zeitschrift für Geomorphologie, 31: 138–160 (in Spanish)Google Scholar
  7. Büdel, J., 1977. Klima-Geomorphologie. Borntraeger, Berlin. 304Google Scholar
  8. Burton Johnson, A., Macpherson, C. G., Muraszko, J. R., et al., 2019. Tectonic Strain Recorded by Magnetic Fabrics (AMS) in Plutons, Including Mt Kinabalu, Borneo: A Tool to Explore Past Tectonic Regimes and Syn-Magmatic Deformation. Journal of Structural Geology, 119: 50–60. CrossRefGoogle Scholar
  9. Cashman, K. V., Sparks, R. S. J., Blundy, J. D., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055.
  10. Cloos, H., 1923. Das Batholitenproblem. Fortschrift der Geologie und Palaeontologie, 1: 1–8 (in Spanish)Google Scholar
  11. Cloos, H., 1931. Zur Experimentellen Tektonik. Die Naturwissenschaften, 19(11): 242–247. CrossRefGoogle Scholar
  12. Corretgé, L. G., Gallastegui, G., Cuesta, A., 1984. Rheologia y Procesos Físicos de Transporte de Magma en el Pasillo de Enclaves de Cangas de Morrazo-Moaña. Trabajos de Geología, 14: 17–26 (in Spanish)Google Scholar
  13. Diot, H., Bouchez, J. L., Boutaleb, M., et al., 1987. Le Granite d’Oulmès (Maroc Central): Structure de l’état Magmatic à l’état Solide et Modèle de Mise en Place. Bulletin de la Société Geologique de France, 3(1): 157–168 (in French)Google Scholar
  14. Fuenlabrada Pérez, J. M., 2018. Geoquímica de Series Metasedimentarias del Macizo Ibérico: Contexto Dinámico de la Transición Ediacarense-Cámbrico. Serie Nova Terra No. 49. ISBN: 978-849749-690-2 (in Spanish)Google Scholar
  15. Ganne, J., Feng, X. J., 2018. Magmatism: A Crustal and Geodynamic Perspective. Journal of Structural Geology, 114: 329–335. CrossRefGoogle Scholar
  16. Glazner, A. F., Bartley, J. M., Coleman, D. S., et al., 2004. Are Plutons Assembled over Millions of Years by Amalgamation from Small Magma Chambers?. GSA Today, 14(4): 4–5. CrossRefGoogle Scholar
  17. Godard, A., 1977. Pays et Paysages du Granite. Presses Universitaires de France, Paris (in Spanish)Google Scholar
  18. Gutiérrez, E. M., 2005. Climatic Geomorpholoy. In: Shroder, J. F. Jr, ed., Development in Earth Surface Processes, 8. Elsevier Pub. Company, Amsterdam. 753Google Scholar
  19. Han, Y. G., Wang, Y., Zhao, G. C., et al., 2014. Syn-Tectonic Emplacement of the Late Mesozoic Laojunshan Granite Pluton in the Eastern Qinling, Central China: An Integrated Fabric and Geochronologic Study. Journal of Structural Geology, 68: 1–15. CrossRefGoogle Scholar
  20. He, X. H., Zhong, H., Zhao, Z. F., et al., 2018. U-Pb Geochronology, Elemental and Sr-Nd Isotopic Geochemistry of the Houyaoyu Granite Porphyries: Implication for the Genesis of Early Cretaceous Felsic Intrusions in East Qinling. Journal of Earth Science, 29(4): 920–938. CrossRefGoogle Scholar
  21. Li, J., Jin, A. W., Hou, G. T., 2017. Timing and Implications for the Late Mesozoic Geodynamic Settings of Eastern North China Craton: Evidences from K-Ar Dating Age and Sedimentary-Structural Characteristics Records of Lingshan Island, Shandong Province. Journal of Earth System Science, 126(8): 1–14. CrossRefGoogle Scholar
  22. Liang, S. D., 1986a. Random-Walk Simulations of Flow in Hele Shaw Cells. Physical Review A, 33(4): 2663–2674. CrossRefGoogle Scholar
  23. Liang, S. D., 1986b. Viscous Flows in Two Dimensions. Reviews of Modern Physics, 58(4): 977–999. CrossRefGoogle Scholar
  24. Liu, H., Li, X. P., Kong, F. M., et al., 2019. Ultra-High Temperature Overprinting of High Pressure Pelitic Granulites in the Huai'an Complex, North China Craton: Evidence from Thermodynamic Modeling and Isotope Geochronology. Gondwana Research, 72: 15–33. CrossRefGoogle Scholar
  25. Liu, Q., Zhao, G. C., Han, Y. G., et al., 2018. Geochronology and Geochemistry of Paleozoic to Mesozoic Granitoids in Western Inner Mongolia, China: Implications for the Tectonic Evolution of the Southern Central Asian Orogenic Belt. The Journal of Geology, 126(4): 451–471. CrossRefGoogle Scholar
  26. Meng, Y. K., Xu, Z. Q., Xu, Y., et al., 2018. Late Triassic Granites from the Quxu Batholith Shedding a New Light on the Evolution of the Gangdese Belt in Southern Tibet. Acta Geologica Sinica—English Edition, 92(2): 462–481. CrossRefGoogle Scholar
  27. Meng, Y. K., Xiong, F. H., Xu, Z. Q., et al., 2019. Petrogenesis of Late Cretaceous Mafic Enclaves and Their Host Granites in the Nyemo Region of Southern Tibet: Implications for the Tectonic-Magmatic Evolution of the Central Gangdese Belt. Journal of Asian Earth Sciences, 176: 27–41. CrossRefGoogle Scholar
  28. Migon, P., 2006. Granite Landscapes of the World. Oxford University Press, Oxford. 384Google Scholar
  29. Nonn, H., 1966. Les Régions côtiÈres de la Galice (Espagne). Etude Géomorphologique. 591 (in Spanish)Google Scholar
  30. Ollier, C. D., 1969. Weathering. Oliver and Boyd, Edinburgh. 304Google Scholar
  31. Parmigiani, A., Faroughi, S., Huber, C., et al., 2016. Bubble Accumulation and Its Role in the Evolution of Magma Reservoirs in the Upper Crust. Nature, 532(7600): 492–495. CrossRefGoogle Scholar
  32. Petford, N., 2003. Rheology of Granitoid Magmas during Ascent and Emplacement. Annual Review of Earth and Planetary Sciences, 31: 399–427. CrossRefGoogle Scholar
  33. Ramsay, J. G., Huber, M. I., 1987. The Techniques of Modern Structural Geology, Vol 2. Fold and Fractures. Academic Press, London. 700Google Scholar
  34. Rey, P. F., Teyssier, C., Kruckenberg, S. C., et al., 2011. Viscous Collision in Channel Explains Double Domes in Metamorphic Core Complexes. Geology, 39(4): 387–390. CrossRefGoogle Scholar
  35. Rodrigues Waldherr, F., Vidal Romaní, J. R., Willians de Oliveira, S., 2018. Consideraciones Previas Sobre las Formas del tipo Tafone y Otras Estructuras Menores en la Vertiente Norte del Pão de Açúcar, Rio de Janeiro-Brasil. Cadernos do Laboratorio Xeolóxico de Laxe, 40: 139–158 (in Spanish)Google Scholar
  36. Sánchez Cela, V., 2004. Granitoid Rocks: A New Geological Meaning. Prensas Universitarias de Zaragoza. Servicio de Publicaciones, Universidad de Zaragoza, Zaragoza. 392Google Scholar
  37. Song, Z. J., Yuan, X. Y., Gao, L., et al., 2019. Quartz Sand Surface Morphology of Granitoid Tafoni at Laoshan, China. Indian Journal of Geomarine Sciences, 48(1): 43–48.Google Scholar
  38. Streckeisen, A. L., 1967. Classification and Nomenclature of Plutonic Rocks. Geologische Rundschau, 63: 773–786.CrossRefGoogle Scholar
  39. Suess, E., 1883. Das Antlitz der Erde. Vier Bande. Tempsky/Freytag, Prag/LeipzigGoogle Scholar
  40. Tahiri, A., Simancas, J. F., Azor, A., et al., 2007. Emplacement of Ellipsoid- Shaped (Diapiric?) Granite: Structural and Gravimetric Analysis of the Oulmès Granite (Variscan Meseta, Morocco). Journal of African Earth Sciences, 48(5): 301–313. CrossRefGoogle Scholar
  41. Talbot, C. J., Jackson, M. P. A., 1987. Internal Kinematics of Salt Dipairs. The American Association of Petroleum Geologist Bulletin, 71(9): 1068–1093.Google Scholar
  42. Twidale, C. R., 1971. Structural Landforms. Landforms Associated with Granitoid Rocks, Faults, and Folded Strata. Australian National University Press, Canberra. 247Google Scholar
  43. Twidale, C. R., 1982. Granite Landforms. Elsevier Publishing Company, Amsterdam. 372Google Scholar
  44. Twidale, C. R., Vidal Romaní, J. R., 1994. On the Multistage Development of Etch Forms. Geomorphology, 11(2): 107–124. CrossRefGoogle Scholar
  45. Twidale, C. R., Vidal Romaní, J. R., 2005. Landforms and Geology of Granite Terrains. Balkema, Amsterdam. 352CrossRefGoogle Scholar
  46. Ulrich, R., Poelchau, M. H., Rae Auriol, S. P., et al., 2018. Rock Fluidization during Peak-Ring Formation of Large Impact Structures. Nature, 562: 511–518. CrossRefGoogle Scholar
  47. Vendeville, B. C., Jackson, M. P. A., 1992. The Rise of Diapirs during Thin-Skinned Extension. Marine and Petroleum Geology, 9(4): 331–354. CrossRefGoogle Scholar
  48. Vidal Romani´, J. R., Twidale, C. R., 1999. Sheet Fractures, Other Stress Forms and Some Engineering Implications. Geomorphology, 31(1/2/3/4): 13–27. CrossRefGoogle Scholar
  49. Vidal Romaní, J. R., 2004. Encyclopedia of Geomorphology Routledge (Sheeting pp. 949-950 and Pressure Release 807-808). Taylor and Francis Group. 2: 1156Google Scholar
  50. Vidal Romaní, J. R., 2008. Forms and Structural Fabric in Granite Rocks. Cadernos do Laboratorio Xeolóxico de Laxe, 33: 175–198.Google Scholar
  51. Vidal Romaní, J. R., Yepes Temiño, J., 2004. Historia de la Morfogénesis Granítica. Cadernos do Laboratorio Xeolóxico de Laxe, 29: 331–360. Juan Ramon Vidal Romaní, Zhaojun Song, Huimin Liu, Yifang Sun and Haonan Li (in Spanish)Google Scholar
  52. Vidal Romaní, J. R., Vaqueiro, M., Sanjurjo Sánchez, J., 2014. Granite Landforms in Galicia. World Geomorphological Landscapes. Landscapes and Landforms of Spain. Chapter 4. Springer Verlag. 63–69 (in Spanish)Google Scholar
  53. Vidal Romaní, J. R., Yepes, J., Rodríguez, R., 1998. Geomorphic Evolution of the Peninsular Hesperian Massif. Study of a Sector Situated between Lugo and Ourense Provinces (Galicia, NW Spain). Cadernos do Laboratorio Xeolóxico de Laxe, 25: 165–199 (in Spanish)Google Scholar
  54. Vidal Romaní, J. R., González-López, L., Vaqueiro, M., et al., 2015. Bioweathering Related to Groundwater Circulation in Cavities of Magmatic Rock Massifs. Environmental Earth Sciences, 73(6): 2997–3010. (in Spanish)CrossRefGoogle Scholar
  55. Vidal Romaní, J. R., Sanjurjo Sánchez, J., Grandal-D’Anglade, A., et al., 2018. Archeology and Geology with a Special Mention to the Relationship between Rocky Substrate and Rock Art (Petroglyphs). Férvedes, 9: 51–57 (in Spanish)Google Scholar
  56. Wang, C., Liu, L., Korhonen, F., et al., 2016. Origins of Early Mesozoic Granitoids and Their Enclaves from West Kunlun, NW China: Implications for Evolving Magmatism Related to Closure of the Paleo-Tethys Ocean. International Journal of Earth Sciences, 105(3): 941–964. CrossRefGoogle Scholar
  57. Wang, X. S., Gao, J., Li, J. L., et al., 2018. Petrogenesis and Geodynamic Implications of Late Jurassic Diorite Porphyry in the Neoproterozoic Ophiolitic Mélange of NE Jiangxi (South China). Acta Geologica Sinica—English Edition, 92(3): 1008–1023. CrossRefGoogle Scholar
  58. Weil, A. B., Gutiérrez-Alonso, G., Johnston, S. T., et al., 2013. Kinematic Constraints on Buckling a Lithospheric-Scale Orocline along the Northern Margin of Gondwana: A Geologic Synthesis. Tectonophysics, 582: 25–49. CrossRefGoogle Scholar
  59. Wilhelmy, H., 1958. Klimamorphologie der Massengesteine. G. Westermann, Braunschweig. 139–179 (in Spanish)Google Scholar
  60. Zhu, X. H., Cao, Y. T., Liu, L., et al., 2014. P-T Path and Geochronology of High Pressure Granitoid Granulite from Danshuiquan Area in Altyn Tagh. Acta Petrologica Sinica, 30: 3717–3728 (in Chinese with English Abstract)Google Scholar
  61. Zulauf, G., Gutiérrez-Alonso, G., Kraus, R., et al., 2011. Formation of Chocolate- Tablet Boudins in a Foreland Fold and Thrust Belt: A Case Study from the External Variscides (Almograve, Portugal). Journal of Structural Geology, 33(11): 1639–1649. CrossRefGoogle Scholar
  62. Zulauf, J., Zulauf, G., Kraus, R., et al., 2011. The Origin of Tablet Boudinage: Results from Experiments Using Power-Law Rock Analogs. Tectonophysics, 510(3/4): 327–336. CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, Part of Springer Nature 2020

Authors and Affiliations

  1. 1.College of Earth Science and EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.University Institute of Geology, University of CorunnaGaliciaSpain
  3. 3.Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations