Advertisement

Magnesium Isotopic Homogeneity of GSR-1 and RGM-2: Two Potential Standards for Mg Isotope Analysis of Low MgO Felsic Rocks

  • Lu Chen
  • Zhian Bao
  • Honglin YuanEmail author
  • Kaiyun Chen
  • Chunlei Zong
Article
  • 7 Downloads

Abstract

In sample preparation and mass spectrometry analysis, sample dissolution, column chemistry, concentration mismatches, and matrix effects have significant potential for introducing analytical artifacts during Mg isotope analysis. Based on the low MgO content and undesirable matrix elements in felsic rocks, the development of well-characterized felsic standards is essential to reduce inter-laboratory mass bias, enable the assessment of data accuracy, and facilitate the comparison of chemical separation procedures in different laboratories. In this work, the homogeneity and long-term stability of two felsic rock standards, GSR-1 and RGM-2, were evaluated due to their low MgO contents. Furthermore, synthetic solutions with doped matrix elements were used to evaluate potential Mg isotope analytical artifacts using multi-collector inductively coupled plasma mass spectrometry. The accuracy and precision of Mg isotopic compositions in GSR-1 and RGM-2 were assessed by repeated measurements over twelve months. The long-term tests show that the Mg isotopic compositions of the two low MgO felsic rocks (GSR-1 and RGM-2) are homogenous among batches and can be used as low MgO reference materials for accuracy assessments of Mg isotopic analyses. The Mg isotopic compositions (δ26Mg) of GSR-1 and RGM-2 were marked as -0.223‰±0.053‰ (2s, n=50) and -0.184‰±0.058‰ (2s, n=50) respectively.

Key words

Mg isotopes analytical geochemistry felsic rock standards mass spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was co-supported by the National Science Foundation of China (Nos. 41803040, 41825007, 41421002, and 41427804), and the MOST Research Foundation from the State Key Laboratory of Continental Dynamics. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1261-6.

References CITED

  1. An, Y., Huang, F., 2014a. A Review of Mg Isotope Analytical Methods by MC-ICP-MS. Journal of Earth Science, 16(5): 822–840. https://doi.org/10.1007/s12583-014-0477-8 CrossRefGoogle Scholar
  2. An, Y., Wu, F., Xiang, Y., et al., 2014b. High-Precision Mg Isotope Analyses of Low-Mg Rocks by MC-ICP-MS. Chemical Geology, 390: 9–21. https://doi.org/10.1016/j.chemgeo.2014.09.014 CrossRefGoogle Scholar
  3. Bao, Z., Huang, K., Huang, T., et al., 2019. Precise Magnesium Isotope Analyses of High-K and Low-Mg Rocks by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 34(5): 940–953. https://doi.org/10.1039/C9JA00002J CrossRefGoogle Scholar
  4. Bolou-Bi, E. B., Vigier, N., Brenot, A., et al., 2009. Magnesium Isotope Compositions of Natural Reference Materials. Geostandards and Geoanalytical Research, 33(1): 95–109. https://doi.org/10.1111/j.1751-908x.2009.00884.x CrossRefGoogle Scholar
  5. Chakrabarti, R., Jacobsen, S. B., 2010. The Isotopic Composition of Magnesium in the Inner Solar System. Earth and Planetary Science Letters, 293(3/4): 349–358. https://doi.org/10.1016/j.epsl.2010.03.001 CrossRefGoogle Scholar
  6. Chang, V. T. C., Makishima, A., Belshaw, N. S., et al., 2003. Purification of Mg from Low-Mg Biogenic Carbonates for Isotope Ratio Determination Using Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 18(4): 296–301. https://doi.org/10.1039/b210977h CrossRefGoogle Scholar
  7. Galy, A., Belshaw, N. S., Halicz, L., et al., 2001. High-Precision Measurement of Magnesium Isotopes by Multiple-Collector Inductively Coupled Plasma Mass Spectrometry. International Journal of Mass Spectrometry, 208(1): 89–98. https://doi.org/10.1016/S1387-3806(01)00380-3 CrossRefGoogle Scholar
  8. Handler, M. R., Baker, J. A., Schiller, M., et al., 2009. Magnesium Stable Isotope Composition of Earth’s Upper Mantle. Earth and Planetary Science Letters, 282(1/2/3/4): 306–313. https://doi.org/10.1016/j.epsl.2009.03.031 CrossRefGoogle Scholar
  9. Hu, Y., Harrington, M. D., Sun, Y., et al., 2016. Magnesium Isotopic Homogeneity of San Carlos Olivine: A Potential Standard for Mg Isotopic Analysis by Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Rapid Communications in Mass Spectrometry, 30(19): 2123–2132. https://doi.org/10.1002/rcm.7700 CrossRefGoogle Scholar
  10. Hu, Y., Teng, F.-Z., Plank, T., et al., 2017. Magnesium Isotopic Composition of Subducting Marine Sediments. Chemical Geology, 466: 15–31. https://doi.org/10.1016/j.chemgeo.2017.06.010 CrossRefGoogle Scholar
  11. Huang, F., Glessner, J., Ianno, A., et al., 2009. Magnesium Isotopic Composition of Igneous Rock Standards Measured by MC-ICP-MS. Chemical Geology, 268(1/2): 15–23. https://doi.org/10.1016/j.chemgeo.2009.07.003 CrossRefGoogle Scholar
  12. Huang, K. J., Teng, F. Z., Wei, G. J., et al., 2012. Adsorption- and Desorption-Controlled Magnesium Isotope Fractionation During Extreme Weathering of Basalt in Hainan Island, China. Earth and Planetary Science Letters, 359/360: 73–83. https://doi.org/10.1016/j.epsl.2012.10.007 CrossRefGoogle Scholar
  13. Jochum, K. P., Nohl, U., Herwig, K., et al., 2005. Georem: A New Geochemical Database for Reference Materials and Isotopic Standards. Geostandards and Geoanalytical Research, 29(3): 333–338. https://doi.org/10.1111/j.1751-908X.2005.tb00904.x CrossRefGoogle Scholar
  14. Li, W. Y., Teng, F. Z., Ke, S., et al., 2010. Heterogeneous Magnesium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 74(23): 6867–6884. https://doi.org/10.1016/j.gca.2010.08.030 CrossRefGoogle Scholar
  15. Ling, M. X., Sedaghatpour, F., Teng, F. Z., et al., 2011. Homogeneous Magnesium Isotopic Composition of Seawater: An Excellent Geostandard for Mg Isotope Analysis. Rapid Communications in Mass Spectrometry, 25(19): 2828–2836. https://doi.org/10.1002/rcm.5172 CrossRefGoogle Scholar
  16. Liu, S. A., Teng, F. Z., He, Y., et al., 2010. Investigation of Magnesium Isotope Fractionation during Granite Differentiation: Implication for Mg Isotopic Composition of the Continental Crust. Earth and Planetary Science Letters, 297(3/4): 646–654. https://doi.org/10.1016/j.epsl.2010.07.019 CrossRefGoogle Scholar
  17. Pearson, N. J., Griffin, W. L., Alard, O., et al., 2006. The Isotopic Composition of Magnesium in Mantle Olivine: Records of Depletion and Metasomatism. Chemical Geology, 226(3/4): 115–133. https://doi.org/10.1016/j.chemgeo.2005.09.029 CrossRefGoogle Scholar
  18. Pogge von Strandmann, P. A. E., Elliott, T., Marschall, H. R., et al., 2011. Variations of Li and Mg Isotope Ratios in Bulk Chondrites and Mantle Xenoliths. Geochimica et Cosmochimica Acta, 75(18): 5247–5268. https://doi.org/10.1016/j.gca.2011.06.026 CrossRefGoogle Scholar
  19. Shalev, N., Farkaš, J., Fietzke, J., et al., 2018. Mg Isotope Interlaboratory Comparison of Reference Materials from Earth-Surface Low-Temperature Environments. Geostandards and Geoanalytical Research, 42(2): 205–221. https://doi.org/10.1111/ggr.12208 CrossRefGoogle Scholar
  20. Sio, C. K. I., Dauphas, N., Teng, F. Z., et al., 2013. Discerning Crystal Growth from Diffusion Profiles in Zoned Olivine by in Situ Mg-Fe Isotopic Analyses. Geochimica et Cosmochimica Acta, 123: 302–321. https://doi.org/10.1016/j.gca.2013.06.008 CrossRefGoogle Scholar
  21. Su, B., Xiao, Y., Chen, C., et al., 2018. Potential Applications of Fe and Mg Isotopes in Genesis of Chromite Deposits in Ophiolites. Earth Science, 43(4): 1011–1024. https://doi.org/10.3799/dqkx.2018.705 Google Scholar
  22. Teng, F. Z., Yang, W., 2014. Comparison of Factors Affecting the Accuracy of High-Precision Magnesium Isotope Analysis by Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Rapid Communications in Mass Spectrometry, 28(1): 19–24. https://doi.org/10.1002/rcm.6752 CrossRefGoogle Scholar
  23. Teng, F. Z., 2017. Magnesium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219–287. https://doi.org/10.2138/rmg.2017.82.7 CrossRefGoogle Scholar
  24. Teng, F. Z., Li, W. Y., Ke, S., et al., 2010. Magnesium Isotopic Composition of the Earth and Chondrites. Geochimica et Cosmochimica Acta, 74(14): 4150-4166. https://doi.org/10.1016/j.gca.2010.04.019 Google Scholar
  25. Teng, F. Z., Li, W. Y., Ke, S., et al., 2015a. Magnesium Isotopic Compositions of International Geological Reference Materials. Geostandards and Geoanalytical Research, 39(3): 329–339. https://doi.org/10.1111/j.1751-908X.2014.00326.x CrossRefGoogle Scholar
  26. Teng, F. Z., Yin, Q. Z., Ullmann, C. V., et al., 2015b. Interlaboratory Comparison of Magnesium Isotopic Compositions of 12 Felsic to Ultramafic Igneous Rock Standards Analyzed by MC-ICPMS. Geochemistry, Geophysics, Geosystems, 16(9): 3197–3209. https://doi.org/10.1002/2015GC005939 CrossRefGoogle Scholar
  27. Teng, F. Z., Wadhwa, M., Helz, R. T., 2007. Investigation of Magnesium Isotope Fractionation During Basalt Differentiation: Implications for a Chondritic Composition of the Terrestrial Mantle. Earth and Planetary Science Letters, 261(1/2): 84–92. https://doi.org/10.1016/j.epsl.2007.06.004 CrossRefGoogle Scholar
  28. Wang, G., Lin, Y., Liang, X., et al., 2011. Separation of Magnesium from Meteorites and Terrestrial Silicate Rocks for High-Precision Isotopic Analysis Using Multiple Collector-Inductively Coupled Plasma-Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 26(9): 1878. https://doi.org/10.1039/c0ja00275e CrossRefGoogle Scholar
  29. Wang, S. J., Teng, F. Z., Scott, J. M., 2016. Tracing the Origin of Continental Himu-Like Intraplate Volcanism Using Magnesium Isotope Systematics. Geochimica et Cosmochimica Acta, 185: 78–87. https://doi.org/10.1016/j.gca.2016.01.007 CrossRefGoogle Scholar
  30. Wiechert, U., Halliday, A. N., 2007. Non-Chondritic Magnesium and the Origins of the Inner Terrestrial Planets. Earth and Planetary Science Letters, 256(3/4): 360–371. https://doi.org/10.1016/j.epsl.2007.01.007 CrossRefGoogle Scholar
  31. Wimpenny, J., Gíslason, S. R., James, R. H., et al., 2010. The Behaviour of Li and Mg Isotopes During Primary Phase Dissolution and Secondary Mineral Formation in Basalt. Geochimica et Cosmochimica Acta, 74(18): 5259–5279. https://doi.org/10.1016/j.gca.2010.06.028 CrossRefGoogle Scholar
  32. Young, E. D., Tonui, E., Manning, C. E., et al., 2009. Spinel-Olivine Magnesium Isotope Thermometry in the Mantle and Implications for the Mg Isotopic Composition of Earth. Earth and Planetary Science Letters, 288(3/4): 524–533. https://doi.org/10.1016/j.epsl.2009.10.014 CrossRefGoogle Scholar
  33. Yuan, H., Liu, X., Bao, Z., et al., 2018. A Fast Separation Method for Isotope Analysis Based on Compressed Nitrogen Gas and Ion-Exchange Chromatography Technique—A Case Study of Sr-Nd Isotope Measurement. Journal of Earth Science, 29(1): 223–229. https://doi.org/10.1007/s12583-017-0944-0 CrossRefGoogle Scholar
  34. Yuan, H., Yuan, W., Bao, Z., et al., 2017. Development of Two New Copper Isotope Standard Solutions and Their Copper Isotopic Compositions. Geostandards and Geoanalytical Research, 41(1): 77–84. https://doi.org/10.1111/ggr.12127 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Continental Dynamics, Department of GeologyNorthwest University, Collaborative Innovation Center of Continental TectonicsXi’anChina

Personalised recommendations