Advertisement

Tectonic Implications and Petrogenesis of the Various Types of Magmatic Rocks from the Zedang Area in Southern Tibet

  • Yuanku Meng
  • Fahui XiongEmail author
  • Jingsui Yang
  • Zhao Liu
  • Kieran A. lles
  • Paul T. Robinson
  • Xiangzhen Xu
Article
  • 23 Downloads

Abstract

In this study, we report systematically field observations, geochronology, whole-rock geochemistry and Sr-Nd-Hf isotopic dataset on the various types of magmatic rocks collected from the Zedang area. Chemically, the diabase and gabbro have a low-K calc-alkaline affinity, whereas the basalt and plagiogranite have medium to high-K calc-alkaline characteristics. In addition, the basalts are highly enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), but strongly depleted in high strength field elements (HFSE), indicating that their magma source probably was derived from a subduction- or arc-related setting. In contrast, both the gabbro and diabase mainly demonstrate an N-MORB-like affinity consistent with normal mid-oceanic ridge basalt (N-MORB) origin. The zircon U-Pb dating results suggest that the basalts were crystallized earlier at ca. 158-161 Ma (Oxfordian stage), but the gabbro was crystallized at ca. 131 Ma (Hauterivian stage of Early Cretaceous). The zircon U-Pb dating results correspond with the field observations that the veins of gabbro intruded basalt. Furthermore, the plagiogranite has a weighted mean age of ca. 160 Ma (MSWD=2.1) consistent with the basalt within the uncertainty. The basalt and the plagiogranite have significantly positive εHf(t) values (+5.8 to +15.6 and +8.6 to +16.1, respectively), suggesting that they were originated from partial melting of a depleted source. However, basalt and plagiogranite are characterized by the wide variations of εHf(t) values indicating minor amounts of exotic crustal material input during the later magma evolution. Additionally, the basalt shows duplex geochemical features of island-arc and mid-oceanic ridge basalt, corresponding to the supra-subduction zone-(SSZ) type affinity. To sum up, two distinct magmatic events identified in this study probably suggest an intra-oceanic arc system existing in the Zedang area during the Late Jurassic, but the intra-oceanic arc subduction extinguished in the Early Cretaceous as suggested by the N-MORB-like gabbro and diabase. Integrated with regional background and different rock types, as well as geochemical features, we conclude that intra-oceanic arc subduction setting developed during the Late Jurassic in the Zedang area, southern Tibet.

Keywords

geochronology petrogenesis magmatic rocks Zedang sub-terrane tectonic implications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Firstly, we are grateful to the guest editors Profs. Xu-Ping Li and Hans-Peter Schertl for their warm-hearted invitation on this special issue. Many thanks go to two reviewers for their constructive and suggestive comments which improved the manuscript greatly. In addition, we thank Prof. Zhiqin Xu for her academic guidance during the southern Tibet field survey. The research was financially co-supported by the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources (Nos. J1901-7, J1901-16), the State Scholarship Fund (No. 201904180031), the National Key Research and Development Project of China (No. 2016YFC0600310), the 2nd Tibetan Plateau Scientific Expedition (No. 2019QZKK0802), the National Natural Science Foundation of China (Nos. 41672046, 41641015, 41762005, 41720104009, 41703036), the China Geological Survey (No. DD201190060), and the International Geological Correlation Project (No. IGCP-649). The final publication is available at Springer via  https://doi.org/10.1007/s12583-019-1248-3.

Supplementary material

12583_2019_1248_MOESM1_ESM.xlsx (37 kb)
Supplementary material, approximately 36.5 KB.

References Cited

  1. Aitchison, J. C., Badengzhu, Davis, A. M., et al., 2000. Remnants of a Cretaceous Intra-Oceanic Subduction System within the Yarlung-Zangbo Suture (Southern Tibet). Earth and Planetary Science Letters, 183(1/2): 231–244. https://doi.org/10.1016/s0012-821x(00)00287-9 CrossRefGoogle Scholar
  2. Aitchison, J. C., McDermid, I. R. C., Ali, J. R., et al., 2007. Shoshonites in Southern Tibet Record Late Jurassic Rifting of a Tethyan Intraoceanic Island Arc. The Journal of Geology, 115(2): 197–213. https://doi.org/10.1086/510642 CrossRefGoogle Scholar
  3. Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67–95. https://doi.org/10.1016/s0377-0273(00)00182-7 CrossRefGoogle Scholar
  4. Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x CrossRefGoogle Scholar
  5. Badengzhu, 1979. Xizang Autonomous Region Zhanang: Sangri Regional Geology Reconnaissance Map, Geological Scale 1: 50 000. Team 2# of Xizang Geological Survey, Lhasa (in Chinese)Google Scholar
  6. Barley, M. E., Pickard, A. L., Zaw, K., et al., 2003. Jurassic to Miocene Magmatism and Metamorphism in the Mogok Metamorphic Belt and the India-Eurasia Collision in Myanmar. Tectonics, 22(3): 4–11. https://doi.org/10.1029/2002tc001398 CrossRefGoogle Scholar
  7. Brophy, J. G., 2009. La-SiO2 and Yb-SiO2 Systematics in Mid-Ocean Ridge Magmas: Implications for the Origin of Oceanic Plagiogranite. Contributions to Mineralogy and Petrology, 158(1): 99–111. https://doi.org/10.1007/s00410-008-0372-3 CrossRefGoogle Scholar
  8. Brophy, J. G., Pu, X. F., 2012. Rare Earth Element-SiO2 Systematics of Mid-Ocean Ridge Plagiogranites and Host Gabbros from the Fournier Oceanic Fragment, New Brunswick, Canada: A Field Evaluation of some Model Predictions. Contributions to Mineralogy and Petrology, 164(2): 191–204. https://doi.org/10.1007/s00410-012-0732-x CrossRefGoogle Scholar
  9. Cao, Y. T., Liu, L., Wang, C., et al., 2019a. Multi-Stage Metamorphism of the UHP Pelitic Gneiss from the Southern Altyn Tagh HP/UHP Belt, Western China: Petrological and Geochronological Evidence. Journal of Earth Science, 30(3): 603–620. https://doi.org/10.1007/s12583-019-0896-7 CrossRefGoogle Scholar
  10. Cao, Y. T., Liu, L., Wang, C., et al., 2019b. Timing and Nature of the Partial Melting Processes during the Exhumation of the Garnet-Bearing Bio-tite Gneiss in the Southern Altyn Tagh HP/UHP Belt, Western China. Journal of Asian Earth Sciences, 170: 274–293. https://doi.org/10.1016/j.jseaes.2018.11.005 CrossRefGoogle Scholar
  11. Chen, Y. H., Yang, J. S., Zhang, L., et al., 2015. Mineralogical Study of the Hornblende Gabbro in Zetang Ophiolite, Southern Tibet, and Its Genetic Implications. Geology in China, 42(5): 1421–1442 (in Chinese with English Abstract)Google Scholar
  12. Cheng, H., Xia, B., Zheng, H., et al., 2018. Chronology, Geochemistry and Tectonic Significance of Daba Ophiolites in Western Segment of Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4): 975–990. https://doi.org/10.3799/dqkx.2018.703 (in Chinese with English Abstract)Google Scholar
  13. Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 34(9): 745–748. https://doi.org/10.1130/g22725.1 CrossRefGoogle Scholar
  14. Coleman, R. G., Peterman, Z. E., 1975. Oceanic Plagiogranite. Journal of Geophysical Research, 80: 1099–1108. https://doi.org/10.1029/jb080i008p01099 CrossRefGoogle Scholar
  15. Dai, J. G., Wang, C. S., Hébert, R., et al., 2011. Petrology and Geochemistry of Peridotites in the Zhongba Ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous Intra-Oceanic Subduction Zone within the Neo-Tethys. Chemical Geology, 288(3/4): 133–148. https://doi.org/10.1016/j.chemgeo.2011.07.011 CrossRefGoogle Scholar
  16. Dai, J. G., Wang, C. S, Polat, A., et al., 2013. Rapid Forearc Spreading between 130 and 120 Ma: Evidence from Geochronology and Geochemistry of the Xigaze Ophiolite, Southern Tibet. Lithos, 172/173: 1–16. https://doi.org/10.1016/j.lithos.2013.03.011 CrossRefGoogle Scholar
  17. Davis, A. M., Aitchison, J. C., Badengzhu, et al., 2002. Paleogene Island Arc Collision-Related Conglomerates, Yarlung-Tsangpo Suture Zone, Tibet. Sedimentary Geology, 150(3/4): 247–273. https://doi.org/10.1016/s0037-0738(01)00199-3 Google Scholar
  18. Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665. https://doi.org/10.1038/347662a0 CrossRefGoogle Scholar
  19. DePaolo, D. J., Wasserburg, G. J., 1976a. Nd Isotopic Variations and Petrogenetic Models. Geophysical Research Letters, 3(5): 249–252. https://doi.org/10.1029/gl003i005p00249 CrossRefGoogle Scholar
  20. DePaolo, D. J., Wasserburg, G. J., 1976b. Inferences about Magma Sources and Mantle Structure from Variations of 143Nd/144Nd. Geophysical Research Letters, 3(12): 743–746. https://doi.org/10.1029/gl003i012p00743 CrossRefGoogle Scholar
  21. Dilek, Y., Furnes, H., 2009. Structure and Geochemistry of Tethyan Ophio-lites and Their Petrogenesis in Subduction Rollback Systems. Lithos, 113(1/2): 1–20. https://doi.org/10.1016/j.lithos.2009.04.022 CrossRefGoogle Scholar
  22. Dilek, Y., Furnes, H., Shallo, M., 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ Evolution of a Marginal Basin Oceanic Crust. Lithos, 100(1/2/3/4): 174–209. https://doi.org/10.1016/j.lithos.2007.06.026 Google Scholar
  23. Dong, H. W., Meng, Y. K., Xu, Z. Q., et al., 2019. Timing of Displacement along the Yardoi Detachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology. Journal of Earth Science, 30(3): 535–548. https://doi.org/10.1007/s12583-019-1223-z CrossRefGoogle Scholar
  24. Dong, X., Zhang, Z. M., 2015. Cambrian Granitoids from the Southeastern Tibetan Plateau: Research on Petrology and Zircon Hf Isotope. Acta Petrologica Sinica, 31(5): 1183–1199 (in Chinese with English Abstract)Google Scholar
  25. Du, L., Long, X. P., Yuan, C., et al., 2018. Petrogenesis of Late Paleozoic Diorites and A-Type Granites in the Central Eastern Tianshan, NW China: Response to Post-Collisional Extension Triggered by Slab Breakoff. Lithos, 318/319: 47–59. https://doi.org/10.1016/j.lithos.2018.08.006 CrossRefGoogle Scholar
  26. Dubois-Côté, V., Hébert, R., Dupuis, C., et al., 2005. Petrological and Geo-chemical Evidence for the Origin of the Yarlung Zangbo Ophiolites, Southern Tibet. Chemical Geology, 214(3/4): 265–286. https://doi.org/10.1016/j.chemgeo.2004.10.004 CrossRefGoogle Scholar
  27. Ferlito, C., 2011. Bimodal Geochemical Evolution at Sheveluch Stratovolcano, Kamchatka, Russia: Consequence of a Complex Subduction at the Junction of the Kuril Kamchatka and Aleutian Island Arcs. Earth-Science Reviews, 105(1/2): 49–69. https://doi.org/10.1016/j.earscirev.2010.12.003 CrossRefGoogle Scholar
  28. Floyd, P. A., 1991. Oceanic Basalts. Blackie and Son Limited, New YorkCrossRefGoogle Scholar
  29. Frey, F. A., Green, D. H., Roy, S. D., 1978. Integrated Models of Basalt Petrogene-sis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 19(3): 463–513. https://doi.org/10.1093/petrology/19.3.463 CrossRefGoogle Scholar
  30. Furnes, H., Dilek, Y., 2017. Geochemical Characterization and Petrogenesis of Intermediate to Silicic Rocks in Ophiolites: A Global Synthesis. Earth-Science Reviews, 166: 1–37. https://doi.org/10.1016/j.earscirev.2017.01.001 CrossRefGoogle Scholar
  31. Gao, S., Zhang, H. F., 2012. Geochemistry. Geological Publishing House, Beijing. 1–410 (in Chinese)Google Scholar
  32. Gill, J., Whelan, P., 1989. Early Rifting of an Oceanic Island Arc (Fiji) Produced Shoshonitic to Tholeiitic Basalts. Journal of Geophysical Research: Solid Earth, 94(B4): 4561–4578. https://doi.org/10.1029/jb094ib04p04561 CrossRefGoogle Scholar
  33. Goolaerts, A., Mattielli, N., de Jong, J., et al., 2004. Hf and Lu Isotopic Reference Values for the Zircon Standard 91500 by MC-ICP-MS. Chemical Geology, 206(1/2): 1–9. https://doi.org/10.1016/j.chemgeo.2004.01.008 CrossRefGoogle Scholar
  34. Griffin, W. L., Afonso, J. C., Belousova, E. A., et al., 2016. Mantle Recycling: Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and Its Tectonic Implications. Journal of Petrology, 57(4): 655–684. https://doi.org/10.1093/petrology/egw011 CrossRefGoogle Scholar
  35. Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LA-MC-ICP-MS Analysis of Zircon Megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. https://doi.org/10.1016/s0016-7037(99)00343-9 CrossRefGoogle Scholar
  36. Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237–269. https://doi.org/10.1016/s0024-4937(02)00082-8 CrossRefGoogle Scholar
  37. Guo, L. S., Liu, Y. L., Liu, S. W., et al., 2013. Petrogenesis of Early to Middle Jurassic Granitoid Rocks from the Gangdese Belt, Southern Tibet: Implications for Early History of the Neo-Tethys. Lithos, 179: 320–333. https://doi.org/10.1016/j.lithos.2013.06.011 CrossRefGoogle Scholar
  38. Harrison, T. M., Yin, A., Grove, M., et al., 2000. The Zedong Window: A Record of Superposed Tertiary Convergence in Southeastern Tibet. Journal of Geophysical Research: Solid Earth, 105(B8): 19211–19230. https://doi.org/10.1029/2000jb900078 CrossRefGoogle Scholar
  39. Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541–1575. https://doi.org/10.2113/econgeo.110.6.1541 CrossRefGoogle Scholar
  40. Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055 CrossRefGoogle Scholar
  41. Ishizaka, K., Yanagi, T., 1975. Occurrence of Oceanic Plagiogranites in the Older Tectonic Zone, Southwest Japan. Earth and Planetary Science Letters, 27(3): 371–377. https://doi.org/10.1016/0012-821X(75)90054-0 CrossRefGoogle Scholar
  42. Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 211(1): 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017 CrossRefGoogle Scholar
  43. Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262: 229–245. https://doi.org/10.1016/j.chemgeo.2009.01.020 CrossRefGoogle Scholar
  44. Johnson, K. T. M., Dick, H. J. B., Shimizu, N., 1990. Melting in the Oceanic Upper Mantle: An Ion Microprobe Study of Diopsides in Abyssal Per-idotites. Journal of Geophysical Research, 95: 2661–2678. https://doi.org/10.1029/jb095ib03p02661 CrossRefGoogle Scholar
  45. Kang, L., Xiao, P. X., Gao, X. F., et al., 2015. Geochemical Characteristics, Petrogenesis and Tectonic Setting of Oceanic Plagiogranites Belt in the Northwestern Margin of Western Kunlun. Acta Petrologica Sinica, 31(9): 2566–2582 (in Chinese with English Abstract)Google Scholar
  46. Kang, Z. Q., Xu, J. F., Wilde, S. A., et al., 2014. Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 200: 157–168. https://doi.org/10.1016/j.lithos.2014.04.019 CrossRefGoogle Scholar
  47. Kelemen, P. B., Johnson, K. T. M., Kinzler, R. J., et al., 1990. High-Field-Strength Element Depletions in Arc Basalts due to Mantle-Magma Interaction. Nature, 345(6275): 521–524. https://doi.org/10.1038/345521a0 CrossRefGoogle Scholar
  48. Kuibida, M. L., Kruk, N. N., Murzin, O. V., et al., 2013. Geologic Position, Age, and Petrogenesis of Plagiogranites in Northern Rudny Altai. Russian Geology and Geophysics, 54(10): 1305–1318. https://doi.org/10.1016/j.rgg.2013.09.012 CrossRefGoogle Scholar
  49. Li, C. F., Li, X. H., Li, Q. L., et al., 2011a. Directly Determining 143Nd/144Nd Isotope Ratios Using Thermal Ionization Mass Spectrometry for Geological Samples without Separation of Sm-Nd. Journal of Analytical Atomic Spec-trometry, 26: 2012–2022. https://doi.org/10.1039/c0ja00081g CrossRefGoogle Scholar
  50. Li, C. F., Li, X. H., Li, Q. L., et al., 2011b. An Evaluation of a Single-Step Extraction Chromatography Separation Method for Sm-Nd Isotope Analysis of Micro Samples of Silicate Rocks by High-Sensitivity Thermal Ionization Mass Spectrometry. Analytica Chimica Acta, 706: 297–304. https://doi.org/10.1016/j.aca.2011.08.036 CrossRefGoogle Scholar
  51. Li, C., 1987. The Longmucuo-Shuanghu-Lancangjiang Plate Suture and the North Boundary of Distribution of Gondwana Facies Permo-Carboniferous System in Northern Xizang, China. Journal of Changchun College of Geology, 17(2): 155–166 (in Chinese with English Abstract)Google Scholar
  52. Li, G. W., Fang, A. M., Wu, F. Y., et al., 2009. Studies on the U-Pb Ages and Hf Isotopes of Zircons in the Aoyitake Plagioclase, West Tarim. Acta Petrologica Sinica, 25(1): 166–172 (in Chinese with English Abstract)Google Scholar
  53. Li, Q., Xia, B., Huang, Q. T., et al., 2014. The Origin and Evolution of Zedang Ophiolite in the Eastern Yarlung-Zangbo Suture Zone, Southern Tibet. Acta Geologica Sinica, 88(2): 145–166 (in Chinese with English Abstract)Google Scholar
  54. Li, X.-P., Chen, H. K., Wang, Z. L., et al., 2015. Spinel Peridotite, Olivine Websterite and the Textural Evolution of the Purang Ophiolite Complex, Western Tibet. Journal of Asian Earth Sciences, 110: 55–71. https://doi.org/10.1016/j.jseaes.2014.06.023 CrossRefGoogle Scholar
  55. Liu, F., Yang, J. S., Dilek, Y., et al., 2015. Geochronology and Geochemistry of Basaltic Lavas in the Dongbo and Purang Ophiolites of the Yar-lung-Zangbo Suture Zone: Plume-Influenced Continental Margin-Type Oceanic Lithosphere in Southern Tibet. Gondwana Research, 27: 701–718. https://doi.org/10.1016/j.gr.2014.08.002 CrossRefGoogle Scholar
  56. Lu, F. X., Sang, L. K., 2002. Petrolgoy. Geological Publishing House, Beijing. 1–399 (in Chinese)Google Scholar
  57. Ma, L., Wang, Q., Li, Z. X., et al., 2013. Early Late Cretaceous (ca. 93Ma) Norites and Hornblendites in the Milin Area, Eastern Gangdese: Lithosphere-Asthenosphere Interaction during Slab Roll-Back and an Insight into Early Late Cretaceous (ca. 100–80 Ma) Magmatic “Flare-up” in Southern Lhasa (Tibet). Lithos, 172/173: 17–30. https://doi.org/10.1016/j.lithos.2013.03.007 CrossRefGoogle Scholar
  58. Ma, S. W., Meng, Y. K., Xu, Z. Q., et al., 2017. The Discovery of Late Tri-assic Mylonitic Granite and Geologic Significance in the Middle Gangdese Batholiths, Southern Tibet. Journal of Geodynamics, 104: 49–64. https://doi.org/10.1016/j.jog.2016.10.007 CrossRefGoogle Scholar
  59. Ma, X. X., Meert, J. G., Xu, Z. Q., et al., 2018. Late Triassic Intra-Oceanic Arc System within Neotethys: Evidence from Cumulate Appinite in the Gangdese Belt, Southern Tibet. Lithosphere, 10(4): 545–565. https://doi.org/10.1130/l682.1 CrossRefGoogle Scholar
  60. Ma, X. X., Xu, Z. Q., Chen, X. J., et al., 2017. The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 28(2): 265–282. https://doi.org/10.1007/s12583-016-0925-8 CrossRefGoogle Scholar
  61. Mahoney, J. J., Frei, R., Tejada, M. L. G., et al., 1998. Tracing the Indian Ocean Mantle Domain through Time: Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor. Journal of Petrology, 39(7): 1285–1306. https://doi.org/10.1093/petroj/39.7.1285 CrossRefGoogle Scholar
  62. McDermid, I. R. C., Aitchison, J. C., Davis, A. M., et al., 2002. The Zedong Terrane: A Late Jurassic Intra-Oceanic Magmatic Arc within the Yar-lung–Tsangpo Suture Zone, Southeastern Tibet. Chemical Geology, 187(3/4): 267–277. https://doi.org/10.1016/s0009-2541(02)00040-2 CrossRefGoogle Scholar
  63. McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4 CrossRefGoogle Scholar
  64. Meng, Y. K., Xiong, F. H., Xu, Z. Q., et al., 2019. Petrogenesis of Late Cretaceous Mafic Enclaves and Their Host Granites in the Nyemo Region of Southern Tibet: Implications for the Tectonic-Magmatic Evolution of the Central Gangdese Belt. Journal of Asian Earth Sciences, 176: 27–41. https://doi.org/10.1016/j.jseaes.2019.01.041 CrossRefGoogle Scholar
  65. Meng, Y. K., Xu, Z. Q., Ma, S. W., et al., 2018a. Late Triassic Granites from the Quxu Batholith Shedding a New Light on the Evolution of the Gangdese Belt in Southern Tibet. Acta Geologica Sinica—English Edition, 92(2): 462–481.  https://doi.org/10.1111/1755-6724.13537 CrossRefGoogle Scholar
  66. Meng, Y. K., Xu, Z. Q., Gao, C. S., et al., 2018b. The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdese Magmatic Belt, Southern Tibet. Acta Petrologica Sinica, 34(3): 513–546 (in Chinese with English Abstract)Google Scholar
  67. Meng, Y. K., Ma, S. W., Xu, Z. Q., et al., 2018c. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43(4): 1142–1163. https://doi.org/10.3799/dqkx.2018.713 (in Chinese with English Abstract)Google Scholar
  68. Meng, Y. K., Xu, Z. Q., Santosh, M., et al., 2016a. Late Triassic Crustal Growth in Southern Tibet: Evidence from the Gangdese Magmatic Belt. Gondwana Research, 37: 449–464. https://doi.org/10.1016/j.gr.2015.10.007 CrossRefGoogle Scholar
  69. Meng, Y. K., Dong, H. W., Cong, Y., et al., 2016b. The Early-Stage Evolution of the Neo-Tethys Ocean: Evidence from Granitoids in the Middle Gangdese Batholith, Southern Tibet. Journal of Geodynamics, 94/95: 34–49. https://doi.org/10.1016/j.jog.2016.01.003 CrossRefGoogle Scholar
  70. Middlemost, E. A. K., 1994. Naming Materials in the Magma/igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9 CrossRefGoogle Scholar
  71. Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321–355. https://doi.org/10.2475/ajs.274.4.321 CrossRefGoogle Scholar
  72. Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleo-gene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1/2/3/4): 49–67. https://doi.org/10.1016/j.chemgeo.2008.02.003 CrossRefGoogle Scholar
  73. Moyen, J. F., Laurent, O., 2018. Archaean Tectonic Systems: A View from Igneous Rocks. Lithos, 302/303: 99–125. https://doi.org/10.1016/j.lithos.2017.11.038 CrossRefGoogle Scholar
  74. Natland, J. H., Dick, H. J. B., Miller, D. J., et al., 2002. Proceedings of the Ocean Drilling Program. College Station, Science Research. 1–69Google Scholar
  75. Pearce, J. A., 1983. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle Xenoliths. Shiva Publishing, Nantwich. 158–185Google Scholar
  76. Pearce, J. A., 1987. An Expert System for the Tectonic Characterization of Ancient Volcanic Rocks. Journal of Volcanology and Geothermal Research, 32(1/2/3): 51–65. https://doi.org/10.1016/0377-0273(87)90036-9 CrossRefGoogle Scholar
  77. Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016 CrossRefGoogle Scholar
  78. Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290–300. https://doi.org/10.1016/0012-821x(73)90129-5 CrossRefGoogle Scholar
  79. Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. https://doi.org/10.1007/bf00375192 CrossRefGoogle Scholar
  80. Peate, D. W., Pearce, J. A., 1998. Causes of Spatial Compositional Variations in Mariana Arc Lavas: Trace Element Evidence. The Island Arc, 7(3): 479–495. https://doi.org/10.1111/j.1440-1738.1998.00205.x CrossRefGoogle Scholar
  81. Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745 CrossRefGoogle Scholar
  82. Peng, Z. X., Mahoney, J., Hooper, P., et al., 1994. A Role for Lower Continental Crust in Flood Basalt Genesis? Isotopic and Incompatible Element Study of the Lower Six Formations of the Western Deccan Traps. Geochimica et Cosmochimica Acta, 58(1): 267–288. https://doi.org/10.1016/0016-7037(94)90464-2 CrossRefGoogle Scholar
  83. Popov, V. S., Bogatov, V. I., Zhuravlev, D. Z., 2002. Sources of Granite Magmas and Middle and Southern Urals Earth Crust Formation: Sm-Nd and Rb-Sr Isotopic Data. Petrologia, 10: 389–410 (in Russian)Google Scholar
  84. Pu, W., Zhao, K. D., Ling, H. F., et al., 2004. High Precision Nd Isotope Measurement by Triton TI Mass Spectrometry. Acta Geoscientia Sinica, 25: 271–274 (in Chinese with English Abstract)Google Scholar
  85. Qu, X. M., Xin, H. B., Xu, W. Y., 2007. Collation of Age of Ore-Hosting Volcanics in Xiongcun Superlarge Cu-Au Deposit on Basis of Three Zircon U-Pb SHRIMP Ages. Mineral Deposits, 26(5): 512–518 (in Chinese with English Abstract)Google Scholar
  86. Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891–931. https://doi.org/10.1093/petrology/36.4.891 CrossRefGoogle Scholar
  87. Richards, J. P., Kerrich, R., 2007. Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 102(4): 537–576. https://doi.org/10.2113/gsecongeo.102.4.537 CrossRefGoogle Scholar
  88. Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longmans Singapore Publishers (Pte), SingaporeGoogle Scholar
  89. Rollinson, H., 2009. New Models for the Genesis of Plagiogranites in the Oman Ophiolite. Lithos, 112(3/4): 603–614. https://doi.org/10.1016/j.lithos.2009.06.006 CrossRefGoogle Scholar
  90. Saccani, E., Allahyari, K., Beccaluva, L., et al., 2013. Geochemistry and Petrology of the Kermanshah Ophiolites (Iran): Implication for the Interaction between Passive Rifting, Oceanic Accretion, and OIB-Type Components in the Southern Neo-Tethys Ocean. Gondwana Research, 24(1): 392–411. https://doi.org/10.1016/j.gr.2012.10.009 CrossRefGoogle Scholar
  91. Schärer, U., Xu, R. H., Allègre, C. J., 1984. UPb Geochronology of Gang-dese (Transhimalaya) Plutonism in the Lhasa-Xigaze Region, Tibet. Earth and Planetary Science Letters, 69(2): 311–320. https://doi.org/10.1016/0012-821x(84)90190-0 CrossRefGoogle Scholar
  92. Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297–312. https://doi.org/10.1007/s00410-009-0478-2 CrossRefGoogle Scholar
  93. Searle, M. P., Khan, M. A., Fraser, J. E., et al., 1999. The Tectonic Evolution of the Kohistan-Karakoram Collision Belt along the Karakoram Highway Transect, North Pakistan. Tectonics, 18(6): 929–949. https://doi.org/10.1029/1999tc900042 CrossRefGoogle Scholar
  94. Searle, M. P., Noble, S. R., Cottle, J. M., et al., 2007. Tectonic Evolution of the Mogok Metamorphic Belt, Burma (Myanmar) Constrained by U-Th-Pb Dating of Metamorphic and Magmatic Rocks. Tectonics, 26(3): 623–626. https://doi.org/10.1029/2006tc002083 Google Scholar
  95. Shastry, A., Srivastava, R. K., Chandra, R., et al., 2002. Geochemical Characteristics and Genesis of Oceanic Plagiogranites Associated with South Andaman Ophiolite Suite, India: A Late Stage Silicate Liquid Immiscible Product. Journal of the Geological Society of India, 59(3): 233–241Google Scholar
  96. Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1): 101–118. https://doi.org/10.1016/0012-821x(82)90120-0 CrossRefGoogle Scholar
  97. Sisson, T. W., Grove, T. L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magma-tism. Contributions to Mineralogy and Petrology, 113(2): 143–166. https://doi.org/10.1007/bf00283225 CrossRefGoogle Scholar
  98. Sisson, T. W., Grove, T. L., Coleman, D. S., 1996. Hornblende Gabbro Sill Complex at Onion Valley, California, and a Mixing Origin for the Sierra Nevada Batholith. Contributions to Mineralogy and Petrology, 126(1/2): 81–108. https://doi.org/10.1007/s004100050237 Google Scholar
  99. Smith, I. E. M., Stewart, R. B., Price, R. C., et al., 2010. Are Arc-Type Rocks the Products of Magma Crystallisation? Observations from a Simple Oceanic Arc Volcano: Raoul Island, Kermadec Arc, SW Pacific. Journal of Volcanology and Geothermal Research, 190(1/2): 219–234. https://doi.org/10.1016/j.jvolgeores.2009.05.006 CrossRefGoogle Scholar
  100. Su, B. X., Teng, F. Z., Hu, Y., et al., 2015. Iron and Magnesium Isotope Fractionation in Oceanic Lithosphere and Sub-Arc Mantle: Perspectives from Ophiolites. Earth and Planetary Science Letters, 430: 523–532. https://doi.org/10.1016/j.epsl.2015.08.020 CrossRefGoogle Scholar
  101. Su, B. X., Zhou, M. F., Jing, J. J., et al., 2019. Distinctive Melt Activity and Chro-mite Mineralization in Luobusa and Purang Ophiolites, Southern Tibet: Constraints from Trace Element Compositions of Chromite and Olivine. Science Bulletin, 64(2): 108–121. https://doi.org/10.1016/j.scib.2018.12.018 CrossRefGoogle Scholar
  102. Sun, C. H., Stern, R. J., 2001. Genesis of Mariana Shoshonites: Contribution of the Subduction Component. Journal of Geophysical Research: Solid Earth, 106(B1): 589–608. https://doi.org/10.1029/2000jb900342 CrossRefGoogle Scholar
  103. Sun, G. M., Li, X. P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yar-lung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026–1039. https://doi.org/10.1007/s12583-018-0854-9 Google Scholar
  104. Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 CrossRefGoogle Scholar
  105. Sun, S. S., Nesbitt, R. W., Sharaskin, A. Y., 1979. Geochemical Characteristics of Mid-Ocean Ridge Basalts. Earth and Planetary Science Letters, 44(1): 119–138. https://doi.org/10.1016/0012-821x(79)90013-x CrossRefGoogle Scholar
  106. Tang, J. X., Li, F. J., Li, Z. J., et al., 2010. Time Limit for Formation of Main Geological Bodies in Xiongcun Copper-Gold Deposit, Xietong-men County, Tibet: Evidence from Zircon U-Pb Ages and Re-Os Age of Molybdenite. Mineral Deposits, 29(3): 461–475 (in Chinese with English Abstract)Google Scholar
  107. Van der Voo, R., Spakman, W., Bijwaard, H., 1999. Tethyan Subducted Slabs under India. Earth and Planetary Science Letters, 171(1): 7–20. https://doi.org/10.1016/s0012-821x(99)00131-4 CrossRefGoogle Scholar
  108. Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4): 533–556. https://doi.org/10.1016/s0016-7037(98)00274-9 CrossRefGoogle Scholar
  109. Wang, J. G., Hu, X. M., Garzanti, E., et al., 2013. Upper Oligocene–Lower Miocene Gangrinboche Conglomerate in the Xigaze Area, Southern Tibet: Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo Initiation. The Journal of Geology, 121(4): 425–444. https://doi.org/10.1086/670722 CrossRefGoogle Scholar
  110. Wang, L., Zeng, L. S., Gao, L. E., et al., 2012. Remnant Jurassic Intraoce-anic Arc System in Southern Tibet: Geochemistry and Tectonic Implications. Acta Petrologica Sinica, 28(6): 1741–1754 (in Chinese with English Abstract)Google Scholar
  111. Wang, S. J., Li, X. P., Duan, W. Y., et al., 2019a. Record of Early-Stage Rodingitization from the Purang Ophiolite Complex, Western Tibet. Journal of Earth Science. https://doi.org/10.1007/s12583-019-1244-7 Google Scholar
  112. Wang, S. J., Li, X. P., Schertl, H. P., et al., 2019b. Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 113(1): 77–97. https://doi.org/10.1007/s00710-018-0636-1 CrossRefGoogle Scholar
  113. Wei, D. L., 2007. Geochemical Characteristics and Tectonic Significance of the Zedong Ophiolite, Yarlung-Zangbo Suture Zone: [Dissertation]. Graduate School of the Chinese Academy of Sciences, Beijing. 1–107 (in Chinese with English Abstract)Google Scholar
  114. Wen, D., Liu, D., Chung, S., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3/4): 191–201. https://doi.org/10.1016/j.chemgeo.2008.03.003 CrossRefGoogle Scholar
  115. Wilson, M., 1989. Igneous Petrogenesis: A Global Tectonic Approach, Chapters 6–7. Unwin Hyman, LondonCrossRefGoogle Scholar
  116. Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2 CrossRefGoogle Scholar
  117. Winter, J. D., 2010. Principles of Igneous and Metamorphic Petrology, Second Edition, Chapters 16–17. Prentice Hall, New JerseyGoogle Scholar
  118. Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2): 53–72. https://doi.org/10.1016/j.epsl.2004.12.005 CrossRefGoogle Scholar
  119. Xia, B., Guo, L. Z., Shi, Y. Q., 1998. Ophiolites and Tectonics in the Southwest Tibet. Sun Yat-Sen University Press, Guangzhou (in Chinese)Google Scholar
  120. Xiong, F. H., Liu, Z., Kapsiotis, A., et al., 2019. Petrogenesis of Lherzolites from the Purang Ophiolite, Yarlung-Zangbo Suture Zone, Tibet: Origin and Significance of Ultra-High Pressure and other ‘Unusual’ Minerals in the Neo-Tethyan Lithospheric Mantle. International Geology Review, 61(17): 2184–2210. https://doi.org/10.1080/00206814.2019.1584771 CrossRefGoogle Scholar
  121. Xiong, F. H., Yang, J. S., Badengzhu, et al., 2014. Different Type of Chromitite and Genetic Model from Luobusa Ophiolite Tibet. Acta Petrologica Sinica, 30(8): 2137–2163 (in Chinese with English Abstract)Google Scholar
  122. Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2015. Origin of Podiform Chro-mitite, a New Model Based on the Luobusa Ophiolite, Tibet. Gondwana Research, 27(2): 525–542. https://doi.org/10.1016/j.gr.2014.04.008 CrossRefGoogle Scholar
  123. Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2016. Diamonds and other Exotic Minerals Recovered from Peridotites of the Dangqiong Ophiolite, Western Yarlung-Zangbo Suture Zone, Tibet. Acta Geologica Sinica—English Edition, 90(2): 425–439. https://doi.org/10.1111/1755-6724.12681 CrossRefGoogle Scholar
  124. Xiong, F. H., Yang, J. S., Xu, X. Z., et al., 2018. Compositional and Isotopic Heterogeneities in the Neo-Tethyan Upper Mantle Recorded by Coexisting Al-Rich and Cr-Rich Chromitites in the Purang Peridotite Massif, SW Tibet (China). Journal of Asian Earth Sciences, 159: 109–129. https://doi.org/10.1016/j.jseaes.2018.03.024 CrossRefGoogle Scholar
  125. Xiong, Q., Griffin, W. L., Zheng, J. P., et al., 2016. Southward Trench Migration at ~130–120 Ma Caused Accretion of the Neo-Tethyan Forearc Lithosphere in Tibetan Ophiolites. Earth and Planetary Science Letters, 438: 57–65. https://doi.org/10.1016/j.epsl.2016.01.014 CrossRefGoogle Scholar
  126. Xu, J. F., Castillo, P. R., 2004. Geochemical and Nd-Pb Isotopic Characteristics of the Tethyan Asthenosphere: Implications for the Origin of the Indian Ocean Mantle Domain. Tectonophysics, 393(1/2/3/4): 9–27. https://doi.org/10.1016/j.tecto.2004.07.028 Google Scholar
  127. Xu, X. Z., Yang, J. S., Guo, G. L., et al., 2011. Lithological Research on the Purang Mantle Peridotite in Western Yarlung-Zangbo Suture Zone in Tibet. Acta Petrologica Sinica, 27: 3179–3196 (in Chinese with English Abstract)Google Scholar
  128. Xu, Z. Q., Dilek, Y., Yang, J. S., et al., 2015. Crustal Structure of the In-dus-Tsangpo Suture Zone and Its Ophiolites in Southern Tibet. Gondwana Research, 27(2): 507–524. https://doi.org/10.1016/j.gr.2014.08.001 CrossRefGoogle Scholar
  129. Yamamoto, S., Komiya, T., Yamamoto, H., et al., 2013. Recycled Crustal Zircons from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet. Island Arc, 22(1): 89–103. https://doi.org/10.1111/iar.12011 CrossRefGoogle Scholar
  130. Yang, J. S., Meng, F. C., Xu, X. Z., et al., 2015. Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals. Gondwana Research, 27(2): 459–485. https://doi.org/10.1016/j.gr.2014.07.004 CrossRefGoogle Scholar
  131. Yang, J. S., Robinson, P. T., Dilek, Y., 2014. Diamonds in Ophiolites: A Little-Known Diamond Occurrence. Elements, 10: 123–126. https://doi.org/10.2113/gselements.10.2.123 CrossRefGoogle Scholar
  132. Yang, Z. M., Hou, Z. Q., Xia, D. X., et al., 2008. Relationship between Western Porphyry and Mineralization in Qulong Copper Deposit of Tibet and Its Enlightenment to Further Exploration. Mineral Deposits, 27: 28–36 (in Chinese with English Abstract)Google Scholar
  133. Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211–280. https://doi.org/10.1146/annurev.earth.28.1.211 CrossRefGoogle Scholar
  134. Yin, A., Harrison, T. M., Ryerson, F. J., et al., 1994. Tertiary Structural Evolution of the Gangdese Thrust System, Southeastern Tibet. Journal of Geophysical Research: Solid Earth, 99(B9): 18175–18201. https://doi.org/10.1029/94jb00504 CrossRefGoogle Scholar
  135. Yu, Y. P., Xie, C. M., Wang, M., et al., 2019. Geochemical Features and Geological Significance of Early Jurassic Granites in Milashan Area, Southern Tibet. Earth Science, 447): 2295–2307. https://doi.org/10.3799/ dqkx.2019.023 (in Chinese with English Abstract)Google Scholar
  136. Zhang, H. F., Xu, W. C., Guo, J. Q., et al., 2007. Zircon U-Pb and Hf Iso-topic Composition of Deformed Granite in the Southern Margin of the Gangdese Belt, Tibet: Evidence for Early Jurassic Subduction of Neo-Tethyan Oceanic Slab. Acta Petrologica Sinica, 23(6): 1347–1353 (in Chinese with English Abstract)Google Scholar
  137. Zhang, L. L., Liu, C. Z., Wu, F. Y., et al., 2014. Zedong Terrane Revisited: An Intra-Oceanic Arc within Neo-Tethys or a Part of the Asian Active Continental Margin?. Journal of Asian Earth Sciences, 80: 34–55. https://doi.org/10.1016/j.jseaes.2013.10.029 CrossRefGoogle Scholar
  138. Zhang, P. F., Zhou, M. F., Liu, Q. Y., et al., 2019. Modification of Mantle Rocks by Plastic Flow below Spreading Centers: Fe Isotopic and Fabric Evidence from the Luobusa Ophiolite, Tibet. Geochimica et Cosmochimica Acta, 253: 84–110. https://doi.org/10.1016/j.gca.2019.03.008 CrossRefGoogle Scholar
  139. Zhang, S. Q., Mahoney, J. J., Mo, X. X., et al., 2005. Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics. Journal of Petrology, 46(4): 829–858. https://doi.org/10.1093/petrology/egi002 CrossRefGoogle Scholar
  140. Zhang, X., Li, X. P., Wang, Z. L., et al., 2016. Mineralogical and Petrogeo-chemical Characteristics of the Garnet Amphibolites in the Xigaze Ophiolite, Tibet. Acta Petrologica Sinica, 32(12): 3685–3702 (in Chinese with English Abstract)Google Scholar
  141. Zhang, Y., Meng, F. X., Niu, Y. L., 2016. Hf Isotope Systematics of Sea-mounts near the East Pacific Rise (EPR) and Geodynamic Implications. Lithos, 262: 107–119. https://doi.org/10.1016/j.lithos.2016.06.026 CrossRefGoogle Scholar
  142. Zhao, J. N., 2018. Petro-Geochemistry and Chronology of Saga Ophiolite in Mid-Western Part of Yarlung-Zangbo Ophiolite Belt and Its Tectonic Significance. Acta Scientiarum Naturalium University Sunyatseni, 57(6): 29–40Google Scholar
  143. Zhou, M. F., Robinson, P. T., Malpas, J., et al., 2005. REE and PGE Geo-chemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet. Journal of Petrology, 46(3): 615–639. https://doi.org/10.1093/petrology/egh091 CrossRefGoogle Scholar
  144. Zhu, D. C., Pan, G. T., Chung, S. L., et al., 2008. SHRIMP Zircon Age and Geo-chemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442–471. https://doi.org/10.2747/0020-6814.50.5.442 CrossRefGoogle Scholar
  145. Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241–255. https://doi.org/10.1016/j.epsl.2010.11.005 Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary MineralsShandong University of Science and TechnologyQingdaoChina
  2. 2.Center for Advanced Research on the Mantle (CARMA), Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of GeologyChinese Academy of Geological SciencesBeijingChina
  3. 3.Institute of Mineral ResourcesChinese Academy of Geological SciencesBeijingChina
  4. 4.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations