Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

New Insight into Factors Controlling Organic Matter Distribution in Lower Cambrian Source Rocks: A Study from the Qiongzhusi Formation in South China

  • 10 Accesses


Sedimentary organic matter (OM) is a major reservoir of organic carbon in the global carbon cycle. Despite many studies, there still exist many debates on the mechanism of OM accumulation and preservation in marine sediments. We present a new field study of a Lower Cambrian shallow marine shelf sequence in the northern edge of the Yangtze Plate, China. Our results show that palynological OM and biogenic silica (Bio-Si) could be used alongside more conventional redox and paleo-productivity proxies to study the distribution of OM in marine sediments. The qualitative and quantitative study of palynological OM provides more detailed information on the nature of sedimentary organic carbon, which can be helpful in the assessment of primary productivity and OM preservation. In addition, the presence of Bio-Si stimulates the physical preservation of OM. Further analysis indicates that an increase in Bio-Si can promote OM preservation. This case-study provides insight into the intertwined factors controlling OM accumulation in the Early Cambrian.

This is a preview of subscription content, log in to check access.

References Cited

  1. Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication Od Ocean Ridge Activity. Sedimentary Geology, 47(1/2): 125–148. https://doi.org/10.1016/0037-0738(86)90075-8

  2. Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): 1–23. https://doi.org/10.1029/2004pa001112

  3. Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3/4): 289–318. https://doi.org/10.1016/j.chemgeo.2003.12.009

  4. Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3/4): 211–225. https://doi.org/10.13039/100000001

  5. Arsairai, B., Wannakomol, A., Feng, Q. L., et al., 2016. Paleoproductivity and Paleoredox Condition of the Huai Hin Lat Formation in Northeastern Thailand. Journal of Earth Science, 27(3): 350–364. https://doi.org/10.1007/s12583-016-0666-8

  6. Banahan, S., Goering, J. J., 1986. The Production of Biogenic Silica and Its Accumulation on the Southeastern Bering Sea Shelf. Continental Shelf Research, 5(1/2): 199–213. https://doi.org/10.1016/0278-4343(86)90015-4

  7. Batten, D. J., 1996. Palynofacies and Palaeoenvironmental Interpretation. Journal of Micropalaeontology, 3: 1011–1064

  8. Batten, S. D., Freeland, H. J., 2007. Plankton Populations at the Bifurcation of the North Pacific Current. Fisheries Oceanography, 16(6): 536–546. https://doi.org/10.1111/j.1365-2419.2007.00448.x

  9. Bhattacharya, S., Dutta, S., 2015. Neoproterozoic-Early Cambrian Biota and Ancient Niche: A Synthesis from Molecular Markers and Palynomorphs from Bikaner-Nagaur Basin, Western India. Precambrian Research, 266: 361–374. https://doi.org/10.1016/j.precamres.2015.05.029

  10. Braun, A., Chen, J., Waloszek, D., et al., 2007. First Early Cambrian Radiolaria. Geological Society, London, Special Publications, 286(1): 143–149. https://doi.org/10.1144/sp286.10

  11. Brooks, S. J., Harman, C., Hultman, M. T., et al., 2015. Integrated Biomarker Assessment of the Effects of Tailing Discharges from an Iron Ore Mine Using Blue Mussels (Mytilus Spp.). Science of the Total Environment, 524–525: 104–114. https://doi.org/10.1016/j.scitotenv.2015.03.135

  12. Burdige, D. J., 2006. Data Report: Dissolved Carbohydrates in Interstitial Waters from the Equatorial Pacific and Peru Margin. Proceedings of the Ocean Drilling Program. Scientific Results, 201: 1–10. https://doi.org/10.2973/odp.proc.sr.201.118.2006

  13. Burdige, D. J., 2007. Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?. Chemical Reviews, 107(2): 467–485. https://doi.org/10.1021/cr050347q

  14. Butterfield, N. J., 2007. Macroevolution and Macroecology through Deep Time. Palaeontology, 50(1): 41–55. https://doi.org/10.1111/j.1475-4983.2006.00613.x

  15. Butterfield, N. J., 2011. Animals and the Invention of the Phanerozoic Earth System. Trends in Ecology & Evolution, 26(2): 81–87. https://doi.org/10.1016/j.tree.2010.11.012

  16. Cao, W., 2014. Cambrian Series 2 Shuijingtuo Formation Radiolarian Fauna from Zigui: [Dissertation]. China University of Geosciences, Wuhan. 49 (in Chinese with English Abstract)

  17. Caron, D. A., Michaels, A. F., Swanberg, N. R., et al., 1995. Primary Productivity by Symbiont-Bearing Planktonic Sarcodines (Acantharia, Radiolaria, Foraminifera) in Surface Waters near Bermuda. Journal of Plankton Research, 17(1): 103–129. https://doi.org/10.1093/plankt/17.1.103

  18. Chang, S., Feng, Q. L., Clausen, S., et al., 2017. Sponge Spicules from the Lower Cambrian in the Yanjiahe Formation, South China: The Earliest Biomineralizing Sponge Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 36–44. https://doi.org/10.1016/j.palaeo.2016.06.032

  19. Chang, S., Clausen, S., Zhang, L., et al., 2018. New Probable Cnidarian Fossils from the Lower Cambrian of the Three Gorges Area, South China, and Their Ecological Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 505: 150–166. https://doi.org/10.1016/j.palaeo.2018.05.039

  20. Chen, D. Z., Wang, J. G., Qing, H. R., et al., 2009. Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 258(3/4): 168–181. https://doi.org/10.1016/j.chemgeo.2008.10.016

  21. Chen, X., Ling, H. F., Vance, D., et al., 2015. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 6(1): 7142. https://doi.org/10.1038/ncomms8142

  22. Ciglenecki, I., Cosovic, B., Vojvodic, V., et al., 2000. The Role of Reduced Sulfur Species in the Coalescence of Polysaccharides in the Adriatic Sea. Marine Chemistry, 71(3/4): 233–249. https://doi.org/10.1016/s0304-4203(00)00051-7

  23. Cremonese, L., Shields- Zhou, G. A., Struck, U., et al., 2014. Nitrogen and Organic Carbon Isotope Stratigraphy of the Yangtze Platform during the Ediacaran-Cambrian Transition in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 398: 165–186. https://doi.org/10.1016/j.palaeo.2013.12.016

  24. Demaison, G. J., Moore, G. T., 1980. Anoxic Environments and Oil Source Bed Genesis. Organic Geochemistry, 2(1): 9–31. https://doi.org/10.1016/0146-6380(80)90017-0

  25. Dennett, M. R., 2002. Video Plankton Recorder Reveals High Abundances of Colonial Radiolaria in Surface Waters of the Central North Pacific. Journal of Plankton Research, 24(8): 797–805. https://doi.org/10.1093/plankt/24.8.797

  26. Ding, Z. J., Bourven, I., Guibaud, G., et al., 2015. Role of Extracellular Polymeric Substances (EPS) Production in Bioaggregation: Application to Wastewater Treatment. Applied Microbiology and Biotechnology, 99(23): 9883–9905. https://doi.org/10.1007/s00253-015-6964-8

  27. Dong, L., Shen, B., Lee, C. T. A., et al., 2015. Germanium/Silicon of the Ediacaran-Cambrian Laobao Cherts: Implications for the Bedded Chert Formation and Paleoenvironment Interpretations. Geochemistry, Geophysics, Geosystems, 16(3): 751–763. https://doi.org/10.1002/2014gc005595

  28. Du, R. L., Tian, L. F., 1986. Macroalgae of Qingbaikouan Period in Yanshan Area. Hebei Science and Technology Press, Shijiazhuang. 114 (in Chinese)

  29. Flemming, H. C., Neu, T. R., Wozniak, D. J., 2007. The EPS Matrix: The “House of Biofilm Cells”. Journal of Bacteriology, 189(22): 7945–7947. https://doi.org/10.1128/jb.00858-07

  30. Gelin, F., Volkman, J. K., Largeau, C., et al., 1999. Distribution of Aliphatic, Nonhydrolyzable Biopolymers in Marine Microalgae. Organic Geochemistry, 30(2/3): 147–159. https://doi.org/10.1016/s0146-6380(98)00206-x

  31. Gendron-Badou, A., Coradin, T., Maquet, J., et al., 2003. Spectroscopic Characterization of Biogenic Silica. Journal of Non-Crystalline Solids, 316(2/3): 331–337. https://doi.org/10.1016/s0022-3093(02)01634-4

  32. Graz, Y., Di- Giovanni, C., Copard, Y., et al., 2010. Quantitative Palynofacies Analysis as a New Tool to Study Transfers of Fossil Organic Matter in Recent Terrestrial Environments. International Journal of Coal Geology, 84(1): 49–62. https://doi.org/10.1016/j.coal.2010.08.006

  33. Guilbaud, R., Slater, B. J., Poulton, S. W., et al., 2018. Oxygen Minimum Zones in the Early Cambrian Ocean. Geochemical Perspectives Letters, 6: 33–38. https://doi.org/10.17863/cam.22469

  34. Guo, J. F., 2009. Yanjiahe Biota from the Early Cambrian of Yichang, Hubei, China: [Dissertation]. Northwest University, Chongqing. 166 (in Chinese with English Abstract)

  35. Guo, J. F., Li, Y., Shu, D., 2010. Fossil Macroscopic Algae from the Yanjiahe Formation, Terreneuvian of the Three Gorges Area, South China. Acta Palaeonotologica Sinica, 49(3): 144–149 (in Chinese with English Abstract)

  36. Guo, J. F., Li, Y., Li, G. X., 2014. Small Shelly Fossils from the Early Cambrian Yanjiahe Formation, Yichang, Hubei, China. Gondwana Research, 25(3): 999–1007. https://doi.org/10.1016/j.gr.2013.03.007

  37. Guo, Q. J., Strauss, H., Liu, C. Q., et al., 2007a. Carbon Isotopic Evolution of the Terminal Neoproterozoic and Early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 140–157. https://doi.org/10.1016/j.palaeo.2007.03.014

  38. Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007b. Trace Element Chemostratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 194–216. https://doi.org/10.1016/j.palaeo.2007.03.016

  39. Guo, Q. J., Strauss, H., Zhu, M. Y., et al., 2013. High Resolution Organic Carbon Isotope Stratigraphy from a Slope to Basinal Setting on the Yangtze Platform, South China: Implications for the Ediacaran- Cambrian Transition. Precambrian Research, 225: 209–217. https://doi.org/10.1016/j.precamres.2011.10.003

  40. Haq, B. U., Schutter, S. R., 2008. A Chronology of Paleozoic Sea-Level Changes. Science, 322(5898): 64–68. https://doi.org/10.1126/science.1161648

  41. Hartnett, H. E., Keil, R. G., Hedges, J. I., et al., 1998. Influence of Oxygen Exposure Time on Organic Carbon Preservation in Continental Margin Sediments. Nature, 391(6667): 572–575. https://doi.org/10.1038/35351

  42. Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.. Chemical Geology, 99(1/2/3): 65–82. https://doi.org/10.1016/0009-2541(92)90031-y

  43. Hu, J., Zhang, S. T., Zhang, G. Z., et al., 2018. Geochemistry and Tectonic Setting of the Eshan Granites in the Southwestern Margin of the Yangtze Plate, Yunnan. Journal of Earth Science, 29(1): 130–143. https://doi.org/10.1007/s12583-017-0747-3

  44. Hu, J., 2008. The Cherty Microbolite in the Deeper Water Facies during the Precambrian-Cambrian Transitional Period in Northeast Guangxi Province, China. Acta Micropalaeontologica Sinia, 25(3): 291–305 (in Chinese with English Abstract)

  45. Hu, L., Zhu, Y. M., Chen, S. B., et al., 2012. Resource Potential Analysis of Shale Gas in Lower Cambrian Qiongzhusi Formation in Middle & Upper Yangtze Region. Journal of China Coal Society, 37(11): 1871–1877

  46. Huc, A. Y., Bertrand, P., Stow, D. A. V., 2000. Depositional Processes of Source Rocks in Deep Offshore Settings; Quaternary Analogs. Annual Meeting Expanded Abstracts-American Association of Petroleum Geologists, 70

  47. Jiang, G. Q., Wang, X. Q., Shi, X. Y., et al., 2012. The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca. 542-520 Ma) Yangtze Platform. Earth and Planetary Science Letters, 317–318: 96–110. https://doi.org/10.1016/j.epsl.2011.11.018

  48. Jiang, X. F., Peng, S. B., Kusky, T. M., et al., 2018. Petrogenesis and Geotectonic Significance of Early-Neoproterozoic Olivine-Gabbro within the Yangtze Craton: Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 29(1): 93–102. https://doi.org/10.1007/s12583-018-0821-5

  49. Jin, C. S., Li, C., Algeo, T. J., et al., 2016. A Highly Redox-Heterogeneous Ocean in South China during the Early Cambrian (≈529-514 Ma): Implications for Biota-Environment Co-Evolution. Earth and Planetary Science Letters, 441: 38–51. https://doi.org/10.1016/j.epsl.2016.02.019

  50. Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1/2/3/4): 111–129. https://doi.org/10.1016/0009-2541(94)90085-x

  51. Jack, C. R. Jr, Knopman, D. S., Jagust, W. J., et al., 2010. Hypothetical Model of Dynamic Biomarkers of the Alzheimer’s Pathological Cascade. The Lancet Neurology, 9(1): 119–128. https://doi.org/10.1016/s1474-4422(09)70299-6

  52. Kennedy, M. J., 2002. Mineral Surface Control of Organic Carbon in Black Shale. Science, 295(5555): 657–660. https://doi.org/10.1126/science.1066611

  53. Lee, C., Wakeham, S. G., 1992. Organic Matter in the Water Column: Future Research Challenges. Marine Chemistry, 39(1/2/3): 95–118. https://doi.org/10.1016/0304-4203(92)90097-t

  54. Lebrato, M., Pahlow, M., Oschlies, A., et al., 2011. Depth Attenuation of Organic Matter Export Associated with Jelly Falls. Limnology and Oceanography, 56(5): 1917–1928. https://doi.org/10.4319/lo.2011.56.5.1917

  55. Lebrato, M., Mendes, P. D. J., Steinberg, D. K., et al., 2013. Jelly Biomass Sinking Speed Reveals a Fast Carbon Export Mechanism. Limnology and Oceanography, 58(3): 1113–1122. https://doi.org/10.4319/lo.2013.58.3.1113

  56. Lei, Y., Servais, T., Feng, Q. L., et al., 2012. The Spatial (Nearshore-Offshore) Distribution of Latest Permian Phytoplankton from the Yangtze Block, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 363- 364: 151–162. https://doi.org/10.1016/j.palaeo.2012.09.010

  57. Li, J., Xie, X., Lin, Z., 2009. Organic Matter Enrichment of the Dalong Formation in Guangyuan Area of the Sichuan Basin. Geological Science and Technology Information, 28(2): 98–103 (in Chinese with English Abstract)

  58. Li, J., He, D., 2014. Palaeogeography and Tectonic-Depositional Environment Evolution of the Cambrian in Sichuan Basin and Adjacent Areas. Journal of Palaeogeography, 16(4): 441–460 (in Chinese with English Abstract)

  59. Li, J. G., Batten, D. J., 2005. Palynofacies: Principles and Methods. Acta Palaeontologica Sinica, 44(1): 138–156 (in Chinese with English Abstract)

  60. Li, Z. Q., 2015. The Distribution and Influencing Factors of Terrestrial Organic Matter in the Typical Systems: [Dissertation]. East China Normal University, Shanghai. 186 (in Chinese with English Abstract)

  61. Little, S. H., Vance, D., Lyons, T. W., et al., 2015. Controls on Trace Metal Authigenic Enrichment in Reducing Sediments: Insights from Modern Oxygen-Deficient Settings. American Journal of Science, 315(2): 77–119. https://doi.org/10.2475/02.2015.01

  62. Lu, L., Qin, J. Z., Shen, B. J., et al., 2018. Biogenetic Evidence of Siliceous Shale in the Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area and Its Relationship with Shale Gas Enrichment. Journal of Geoscience, 4: 226–236 (in Chinese with English Abstract)

  63. Luo, H. L., Jiang, Z. W., Tang, L. D., 1994. Stratotype Section for Lower Cambrian Stages in China. Yunnan Science and Technology Press, Kunming. 183 (in Chinese with English Abstract)

  64. Lyle, M., Murray, D. W., Finney, B. P., et al., 1988. The Record of Late Pleistocene Biogenic Sedimentation in the Eastern Tropical Pacific Ocean. Paleoceanography, 3(1): 39–59. https://doi.org/10.1029/pa003i001p00039

  65. Ma, Q. F., Feng, Q. L., Cao, W. C., et al., 2019. Radiolarian Fauna from the Chiungchussuan Shuijingtuo Formation (Cambrian Series 2) in Western Hubei Province, South China. Science China Earth Sciences, 62: 1–14. https://doi.org/10.1007/s11430-018-9335-0

  66. Maliva, R. G., Knoll, A. H., Siever, R., 1989. Secular Change in Chert Distribution: A Reflection of Evolving Biological Participation in the Silica Cycle. Palaios, 4(6): 519–532. https://doi.org/10.2307/3514743

  67. Mecozzi, M., Acquistucci, R., Di Noto, V., et al., 2001. Characterization of Mucilage Aggregates in Adriatic and Tyrrhenian Sea: Structure Similarities between Mucilage Samples and the Insoluble Fractions of Marine Humic Substance. Chemosphere, 44(4): 709–720. https://doi.org/10.1016/s0045-6535(00)00375-1

  68. Meyers, S. R., Sageman, B. B., Lyons, T. W., 2005. Organic Carbon Burial Rate and the Molybdenum Proxy: Theoretical Framework and Application to Cenomanian-Turonian Oceanic Anoxic Event 2. Paleoceanography, 20(2): 169–189. https://doi.org/10.1029/2004pa001068

  69. Miller, K. G., 2005. The Phanerozoic Record of Global Sea-Level Change. Science, 310(5752): 1293–1298. https://doi.org/10.1126/science.1116412

  70. Mo, X., 2012. Study of Stratigraphic Classification and the Variance of Sedimentary System of Cambrian Stratum in Guangyuan Area: [Dissertation]. Chengdu University of Technology, Chengdu. 69 (in Chinese with English Abstract)

  71. Moczydlowska, M., Zang, W. L., 2006. The Early Cambrian Acritarch Skiagia and Its Significance for Global Correlation. Palaeoworld, 15(3/4): 328–347. https://doi.org/10.1016/j.palwor.2006.10.003

  72. Moczydlowska, M., Willman, S., 2009. Ultrastructure of Cell Walls in Ancient Microfossils as a Proxy to Their Biological Affinities. Precambrian Research, 173(1/2/3/4): 27–38. https://doi.org/10.1016/j.precamres.2009.02.006

  73. Moczydlowska, M., 2011. The Early Cambrian Phytoplankton Radiation: Acritarch Evidence from the L-Formation, Estonia. Palynology, 35(1): 103–145. https://doi.org/10.1080/01916122.2011.552563

  74. Obeid, W., Salmon, E., Lewan, M. D., et al., 2015. Hydrous Pyrolysis of Scenedesmus Algae and Algaenan-Like Residue. Organic Geochemistry, 85: 89–101. https://doi.org/10.1016/j.orggeochem.2015.04.001

  75. Parrish, J. T., 1982. Upwelling and Petroleum Source Beds, with Reference to Palaeozoic, Deep Sea Research Part B. AAPG Bulletin, 66: 750–774. https://doi.org/10.1306/03b5a30e-16d1-11d7-8645000102c1865d

  76. Pedersen, T. F., Calvert, S. E., 1990. Anoxia versus Productivity: What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks? (1). AAPG Bulletin, 74(4): 454–466. https://doi.org/10.1306/0c9b232b-1710-11d7-8645000102c1865d

  77. Piper, D. Z., Perkins, R. B., 2004. A Modern vs. Permian Black Shale—The Hydrography, Primary Productivity, and Water-Column Chemistry of Deposition. Chemical Geology, 206(3/4): 177–197. https://doi.org/10.1016/j.chemgeo.2003.12.006

  78. Poulton, S. W., Fralick, P. W., Canfield, D. E., 2010. Spatial Variability in Oceanic Redox Structure 1.8 Billion Years Ago. Nature Geoscience, 3(7): 486–490. https://doi.org/10.1038/ngeo889

  79. Racki, G., Cordey, F., 2000. Radiolarian Palaeoecology and Radiolarites: Is the Present the Key to the Past?. Earth-Science Reviews, 52(1/2/3): 83–120. https://doi.org/10.1016/s0012-8252(00)00024-6

  80. Robinson, D. H., Sullivan, C. W., 1987. How do Diatoms Make Silicon Biominerals?. Trends in Biochemical Sciences, 12: 151–154. https://doi.org/10.1016/0968-0004(87)90072-7

  81. Ross, D. J. K., Marc Bustin, R., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916–927. https://doi.org/10.1016/j.marpetgeo.2008.06.004

  82. Sharma, M., Mishra, S., Dutta, S., et al., 2009. On the Affinity of Chuaria- Tawuia Complex: A Multidisciplinary Study. Precambrian Research, 173(1/2/3/4): 123–136. https://doi.org/10.1016/j.precamres.2009.04.003

  83. Shen, J., Schoepfer, S. D., Feng, Q. L., et al., 2015. Marine Productivity Changes during the End-Permian Crisis and Early Triassic Recovery. Earth-Science Reviews, 149: 136–162. https://doi.org/10.1016/j.earscirev.2014.11.002

  84. Steiner, M., Zhu, M., Weber, B., et al., 2001. The Lower Cambrian of Eastern Yunnan: Trilobite-Based Biostratigraphy and Related Faunas. Acta Palaeont Sinica, 40: 63–79 (in Chinese with English Abstract)

  85. Steiner, M., Li, G. X., Qian, Y., et al., 2004. Lower Cambrian Small Shelly Fossils of Northern Sichuan and Southern Shaanxi (China), and Their Biostratigraphic Importance. Geobios, 37(2): 259–275. https://doi.org/10.1016/j.geobios.2003.08.001

  86. Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution, Blackwell Scientific Publications, Oxford

  87. Tian, W., Pan, L., Jiang, L., 2001. A Discussion on “Paleo-Island of Central Hubei” in Early Stage of Lower Cambrian Epoch. Hubei Geology & Mineral Resources, 15(4): 7–11 (in Chinese with English Abstract)

  88. Traverse, A., 2007. Differential Sorting of Palynomorphs into Sediments: Palynofacies, Palynodebris, Discordant Palynomorphs. Paleopalynology, 579: 275–287. https://doi.org/10.1007/978-1-4020-5610-9_18

  89. Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012

  90. Tucker, M. E., 1992. The Precambrian-Cambrian Boundary: Seawater Chemistry, Ocean Circulation and Nutrient Supply in Metazoan Evolution, Extinction and Biomineralization. Journal of the Geological Society, 149(4): 655–668. https://doi.org/10.1144/gsjgs.149.4.0655

  91. Turgeon, S., Brumsack, H. J., 2006. Anoxic vs Dysoxic Events Reflected in Sediment Geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of Central Italy. Chemical Geology, 234(3/4): 321–339. https://doi.org/10.1016/j.chemgeo.2006.05.008

  92. Tyson, R. V., 1987. The Genesis and Palynofacies Characteristics of Marine Petroleum Source Rocks. Geological Society, London, Special Publications, 26(1): 47–67. https://doi.org/10.1144/gsl.sp.1987.026.01.03

  93. Tyson, R. V., Pearson, T. H., 1991. Modern and Ancient Continental Shelf Anoxia: An Overview. Geological Society, London, Special Publications, 58(1): 1–24. https://doi.org/10.1144/gsl.sp.1991.058.01.01

  94. Tyson, R. V., 2005. The “Productivity versus Preservation” Controversy; Cause, Flaws, Andresolution. In: Harris, N. B., ed., Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. Society for Sedimentary Geology Special Publication, 82: 17–33. https://doi.org/10.2110/pec.05.82.0017

  95. van de Velde, S., 2018. Electron Shuttling and Elemental Cycling in the Seafloor: [Dissertation]. Vrije Universiteit Brussel/Universiteit Antwerpen, Brussel/Antwerpen. 352

  96. van de Velde, S., Mills, B. J. W., Meysman, F. J. R., et al., 2018. Early Palaeozoic Ocean Anoxia and Global Warming Driven by the Evolution of Shallow Burrowing. Nature Communications, 9(1): 2554–2564. https://doi.org/10.1038/s41467-018-04973-4

  97. Vandenbroucke, M., Largeau, C., 2007. Kerogen Origin, Evolution and Structure. Organic Geochemistry, 38(5): 719–833. https://doi.org/10.1016/j.orggeochem.2007.01.001

  98. Verdugo, P., Alldredge, A. L., Azam, F., et al., 2004. The Oceanic Gel Phase: A Bridge in the DOM-POM Continuum. Marine Chemistry, 92(1/2/3/4): 67–85. https://doi.org/10.1016/j.marchem.2004.06.017

  99. Verdugo, P., Santschi, P. H., 2010. Polymer Dynamics of DOC Networks and Gel Formation in Seawater. Deep Sea Research Part II: Topical Studies in Oceanography, 57(16): 1486–1493. https://doi.org/10.1016/j.dsr2.2010.03.002

  100. Verlaan, P. A., 2008. The Role of Primary-Producer-Mediated Organic Complexation in Regional Variation in the Supply of Mn, Fe, Co, Cu, Ni and Zn to Oceanic, Non-Hydrothermal Ferromanganese Crusts and Nodules. Marine Georesources &Geotechnology, 26(4): 214–230. https://doi.org/10.1080/10641190802459704

  101. Volcani, B. E., Simpson, T. L., Volcani, B. E., 1981. Silicon and Siliceous Structures in Biological Systems. 157–200. https://doi.org/10.1007/978-1-4612-5944-2_2

  102. Wang, J. G., Chen, D. Z., Yan, D. T., et al., 2012. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran-Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306-307: 129–138. https://doi.org/10.1016/j.chemgeo.2012.03.005

  103. Wang, J., Li, X., Huang, W., 2014. The Shale Gas Exploration Prospect Assesses of the Niutitang Formation in Western Hubei and Hunan-Eastern Chongqing. Geological Science and Technology Information, 33: 98–103 (in Chinese with English Abstract)

  104. Wu, W., Zhu, M. Y., Steiner, M., 2014. Composition and Tiering of the Cambrian Sponge Communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 398: 86–96. https://doi.org/10.1016/j.palaeo.2013.08.003

  105. Xia, M. L., Wen, L., Wang, Y. G., et al., 2010. High Quality Source Rocks in Trough Facies of Upper Permian Dalong Formation, Sichuan Basin. Petroleum Exploration and Development, 37(6): 654–662. https://doi.org/10.1016/s1876-3804(11)60002-5

  106. Xiang, Y., Feng, Q. L., Shen, J., et al., 2013. Changhsingian Radiolarian Fauna from Anshun of Guizhou, and Its Relationship to TOC and Paleo-Productivity. Science China Earth Sciences, 56(8): 1334–1342. https://doi.org/10.1007/s11430-013-4615-4

  107. Xiao, S. H., Hu, J., Yuan, X. L., et al., 2005. Articulated Sponges from the Lower Cambrian Hetang Formation in Southern Anhui, South China: Their Age and Implications for the Early Evolution of Sponges. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1/2): 89–117. https://doi.org/10.1016/j.palaeo.2002.02.001

  108. Xing, Y., 1982. Microflora of the Sinian System and Lower Cambrian near Kunming, Yunnan and Its Stratigraphical Significance. Acta Geologica Sinica, 56(1): 42–50 (in Chinese with English Abstract)

  109. Xu, L. G., Lehmann, B., Mao, J. W., et al., 2012. Mo Isotope and Trace Element Patterns of Lower Cambrian Black Shales in South China: Multi-Proxy Constraints on the Paleoenvironment. Chemical Geology, 318–319: 45–59. https://doi.org/10.1016/j.chemgeo.2012.05.016

  110. Yamamoto, K., 1987. Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1/2): 65–108. https://doi.org/10.1016/0037-0738(87)90017-0

  111. Yang, A. H., Zhu, M. Y., Zhang, J. M., et al., 2003. Early Cambrian Eodiscoid Trilobites of the Yangtze Platform and Their Stratigraphic Implications. Progress in Natural Science, 13(11): 861–866. https://doi.org/10.1080/10020070312331344560

  112. Yang, R. D., Zhao, Y. L., Guo, Q. J., 1999. Algae and Acritarchs and Their Palaeooceanographic Significance from the Early Cambrian Black Shale in Guizhou, China. Acta Palaeonto Logica Sinica, 38: 154–160 (in Chinese with English Abstract)

  113. Yin, F., Xue, X., 2001. Early Radiation of Acritarch and Its Significance. Journal of Northwest University (Natural Science Edition), 31(5): 409–411 (in Chinese with English Abstract)

  114. Yin, L., 1987. New Data of Microfossils from Precambrian-Cambrian Cherts in Ningqiang, South Shaanxi. Acta Palaeontologica Sinica, 26(2): 187–195 (in Chinese with English Abstract)

  115. Yin, L., 2006. Acritarch Study in China. Science Press, Beijing. 222 (in Chinese)

  116. Yuan, X. L., Xiao, S. H., Parsley, R. L., et al., 2002. Towering Sponges in an Early Cambrian Lagerste: Disparity between Nonbilaterian and Bilaterian Epifaunal Tierers at the Neoproterozoic-Cambrian Transition. Geology, 30(4): 363–366. https://doi.org/10.1130/0091-7613(2002)030<0363:tsiaec>2.0.co;2

  117. Zhang, L., Danelian, T., Feng, Q. L., et al., 2013. On the Lower Cambrian Biotic and Geochemical Record of the Hetang Formation (Yangtze Platform, South China): Evidence for Biogenic Silica and Possible Presence of Radiolaria. Journal of Micropalaeontology, 32(2): 207–217. https://doi.org/10.1144/jmpaleo2013-003

  118. Zhang, L., 2014. Study on the Biota and Its Co-Evolution to the Paleoenvironment in the Early Cambrian of the Eastern Yangtze Gorges and Western Zhejiang, China: [Dissertation]. China University of Geosciences, Wuhan. 158 (in Chinese with English Abstract)

  119. Zhang, S., Zhang, B., Bian, L., et al., 2007. The Accumulation of Red Algae from the Oil Shale of 800 Million Years Old Xiaoling Formation. Science in China Series D: Earth Science, 37(5): 636–643 (in Chinese with English Abstract)

  120. Zhang, X. G., Pratt, B. R., 1994. New and Extraordinary Early Cambrian Sponge Spicule Assemblage from China. Geology, 22(1): 43–46. https://doi.org/10.1130/0091-7613(1994)022<0043:naeecs>2.3.co;2

  121. Zhang, L. W., Huang, J. H., Liang, Q., et al., 2007. Geological Characteristics and Ore Prospect of the Black Layers in the Doushantuo and Niutitang Formations in Guizhou Province. Acta Mineralogica Sinica, 27(1): 456–460 (in Chinese with English Abstract)

  122. Zhang, Y., Zheng, S., Gao, B., et al., 2017. Distribution Characteristics and Enrichment Factors of Organic Matter in Upper Permian Dalong Formation of Shangsi Section, Guangyuan, Sichuan Basin. Earth Science, 42(6): 1009–1025. https://doi.org/10.3799/dqkx.2017.534 (in Chinese with English Abstract)

  123. Zhang, K., Feng, Q. L., 2019. Early Cambrian Radiolarians and Sponge Spicules from the Niujiaohe Formation in South China. Palaeoworld, 28(3): 234–242. https://doi.org/10.1016/j.palwor.2019.04.001.

  124. Zhao, Y. L., Steiner, M., Yang, R. D., et al., 1999. Discovery and Significance of the Early Metazoan Biotas from the Lower Cambrian Niutitang Formation Zunyi, Guizhou, China. Acta Palaeontologica Sinica, 38(Suppl.): 139–153. https://doi.org/10.1108/jcom-04-2012-0030

  125. Zheng, H. L., Yang, X. L., Zhao, Y. L., et al., 2014. Stratigraphic Significance of Eodiscoids from the Niutitang Formation (Cambrian) in Jinsha County, Guizhou Province. Journal of Guizhou University (Natural Sciences), 31(1): 32–37 (in Chinese with English Abstract)

  126. Zhou, C. M., Jiang, S. Y., 2009. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3/4): 279–286. https://doi.org/10.1016/j.palaeo.2008.10.024

  127. Zhu, X. J., Cai, J. G., Wang, X. J., et al., 2014. Effects of Organic Components on the Relationships between Specific Surface Areas and Organic Matter in Mudrocks. International Journal of Coal Geology, 133: 24–34. https://doi.org/10.1016/j.coal.2014.08.009

Download references


We are grateful to the editors for editorial handling and the anonymous reviewers for their critical and constructive comments that have greatly improved the quality of this paper. We express our sincere thanks to the palaeontology research team of the UMR 8198-Evo-Eco-Paleo, CNRS, for allowing the research stay of the senior author at Lille University. We thank Dr. Sebastiaan van de Velde for the language correction. We also thank Prof. Jianxin Yu, senior engineer Zhongbao Liu, and Dr. Thomas Harvey for inspiring discussion. This work was supported by the National Natural Science Foundation of China (No. 41430101) and the State Special Fund from Ministry of Science and Technology (No. 2017ZX05036002). The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1240-y.

Author information

Correspondence to Qinglai Feng.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Feng, Q., Tribovillard, N. et al. New Insight into Factors Controlling Organic Matter Distribution in Lower Cambrian Source Rocks: A Study from the Qiongzhusi Formation in South China. J. Earth Sci. 31, 181–194 (2020). https://doi.org/10.1007/s12583-019-1240-y

Download citation

Key words

  • organic-rich sediment
  • organic matter distribution
  • type and origin of OM
  • biogenic silica
  • Lower Cambrian