Advertisement

Journal of Earth Science

, Volume 30, Issue 5, pp 964–976 | Cite as

In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties

  • Xiang Wang
  • Xiaoxiang Xu
  • Yu YeEmail author
  • Chao Wang
  • Dan Liu
  • Xiaochao Shi
  • Sha Wang
  • Xi Zhu
Petrology, Mineralogy and Geochemistry
  • 10 Downloads

Abstract

In-situ powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra were measured on the natural crystals of calcite (Ca0.996Mg0.004CO3), dolomite (Ca0.497Mg0.454Fe0.046Mn0.003CO3) and magnesite (Mg0.988Ca0.010Fe0.002CO3), with a temperature up to 796 K. The thermal expansion coefficients were evaluated for these carbonate minerals, resulting in the values of 2.7×10-5, 3.3×10-5 and 3.5×10-5 K-1 for calcite, dolomite and magnesite, respectively. The magnitude of these coefficients is in the same order as those for the isothermal and elastic moduli of these carbonates (e.g., calcite<dolomite<magnesite). The IR-active internal modes of the CO3 group systematically shift to lower frequencies at elevated temperature, and the isobaric (γiP) and isothermal (γiT) Gruneisen parameters for the internal modes are generally smaller than 0.5. The corresponding anharmonic parameters (ai) are typically within the range of -1.5.+1×10-5 K-1, which are significantly smaller in magnitude than those for the external modes. We also calculate the thermodynamic properties (internal energy, heat capacities and entropy) at high temperatures for these carbonates, and the anharmonic contribution to thermodynamics shows an order of calcite>dolomite>magnesite. The Debye model (harmonic approximation) would be valid for magnesite to simulating the thermodynamic properties and isotope fractionation β-factor at high P-T condition.

Key words

calcite dolomite magnesite high-temperature FTIR anharmonicity thermodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

Many thanks to Profs. Kurt Leinenweber and Joseph Smyth for helpful and constructive discussion and revision on this manuscript. This work was supported by the National Key Research and Development Program of China (No. 2016YFC0600204), and the National Natural Science Foundation of China (Nos. 41590621, 41672041). EPMA and in-situ high-T FTIR experiments were carried out at the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan), while in-situ high-T powder XRD measurements were conducted at School of Chemical Science and Engineering, Tongji University. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1236-7.

Supplementary material

12583_2019_1236_MOESM1_ESM.xlsx (14 kb)
Supplementary material, approximately 14.4 KB.

References Cited

  1. Adams, D. M., Williams, A. D., 1980. Vibrational Spectroscopy at very High Pressures. Part 26. An Infrared Study of the Metastable Phases of Ca[CO3]. Journal of the Chemical Society, Dalton Transactions, 8: 1482.  https://doi.org/10.1039/dt9800001482 CrossRefGoogle Scholar
  2. Andersen, F. A., Brečević, L., Beuter, G., et al., 1991. Infrared Spectra of Amorphous and Crystalline Calcium Carbonate. Acta Chemica Scandinavica, 45: 1018–1024.  https://doi.org/10.3891/acta.chem.scand.45-1018 CrossRefGoogle Scholar
  3. Antao, S. M., Hassan, I., Mulder, W. H., et al., 2009. In-situ Study of the R3c-R3m Orientational Disorder in Calcite. Physics and Chemistry of Minerals, 36(3): 159–169.  https://doi.org/10.1007/s00269-008-0266-y CrossRefGoogle Scholar
  4. Antao, S. M., Mulder, W. H., Hassan, I., et al., 2004. Cation Disorder in Dolomite, CaMg(CO3)2, and Its Influence on the Aragonite+Magnesite. Dolomite Reaction Boundary. American Mineralogist, 89(7): 1142–1147.  https://doi.org/10.2138/am-2004-0728 CrossRefGoogle Scholar
  5. Biellmann, C., Gillet, P., 1992. High-Pressure and High-Temperature Behaviour of Calcite, Aragonite and Dolomite: A Raman Spectroscopic Study. European Journal of Mineralogy, 4(2): 389–394.  https://doi.org/10.1127/ejm/4/2/0389 CrossRefGoogle Scholar
  6. Biellmann, C., Gillet, P., Guyot, F., et al., 1993. Experimental Evidence for Carbonate Stability in the Earth’s Lower Mantle. Earth and Planetary Science Letters, 118(1/2/3/4): 31–41.  https://doi.org/10.1016/0012-821x(93)90157-5 CrossRefGoogle Scholar
  7. Bigeleisen, J., Mayer, M. G., 1947. Calculation of Equilibrium Constants for Isotopic Exchange Reactions. The Journal of Chemical Physics, 15(5): 261–267.  https://doi.org/10.1063/1.1746492 CrossRefGoogle Scholar
  8. Bottcher, M., Gehlken, P. L., Steele, D. F., 1997. Characterization of Inorganic and Biogenic Magnesian Calcites by Fourier Transform Infrared Spectroscopy. Solid State Ionics, 101–103: 1379–1385.  https://doi.org/10.1016/s0167-2738(97)00235-x CrossRefGoogle Scholar
  9. Bottcher, M. E., Gehlken, P. L., Usdowski, E., 1992. Infrared Spectroscopic Investigations of the Calcite-Rhodochrosite and Parts of the Calcite-Magnesite Mineral Series. Contributions to Mineralogy and Petrology, 109(3): 304–306.  https://doi.org/10.1007/bf00283320 CrossRefGoogle Scholar
  10. Boulard, E., Gloter, A., Corgne, A., et al., 2011. New Host for Carbon in the Deep Earth. Proceedings of the National Academy of Sciences of the United States of America, 108(13): 5184–5187.  https://doi.org/10.1073/pnas.1016934108 CrossRefGoogle Scholar
  11. Boulard, E., Menguy, N., Auzende, A. L., et al., 2012. Experimental Investigation of the Stability of Fe-Rich Carbonates in the Lower Mantle. Journal of Geophysical Research: Solid Earth, 117(B2): B02208.  https://doi.org/10.1029/2011jb008733 CrossRefGoogle Scholar
  12. Brenker, F. E., Vollmer, C., Vincze, L., et al., 2007. Carbonates from the Lower Part of Transition Zone or Even the Lower Mantle. Earth and Planetary Science Letters, 260(1/2): 1–9.  https://doi.org/10.1016/j.epsl.2007.02.038 CrossRefGoogle Scholar
  13. Bromiley, F. A., Ballaran, T. B., Langenhorst, F., et al., 2007. Order and Miscibility in the Otavite-Magnesite Solid Solution. American Mineralogist, 92(5/6): 829–836.  https://doi.org/10.2138/am.2007.2315 CrossRefGoogle Scholar
  14. Catalli, K., Williams, Q., 2005. A High-Pressure Phase Transition of Calcite-III. American Mineralogist, 90(10): 1679–1682.  https://doi.org/10.2138/am.2005.1954 CrossRefGoogle Scholar
  15. Chang, L. L. Y., Howie, R. A., Zussman, J., 1996. Non-Silicates: Sulfates, Carbonates, Phosphates and Halides. The Geological Society, Longman, London. https://ci.nii.ac.jp/naid/10011703589/en/ Google Scholar
  16. Chen, P. F., Chiao, L. Y., Huang, P. H., et al., 2006. Elasticity of Magnesite and Dolomite from a Genetic Algorithm for Inverting Brillouin Spectroscopy Measurements. Physics of the Earth and Planetary Interiors, 155(1/2): 73–86.  https://doi.org/10.1016/j.pepi.2005.10.004 CrossRefGoogle Scholar
  17. Cynn, H., Hofmeister, A. M., Burnley, P. C., et al., 1996. Thermodynamic Properties and Hydrogen Speciation from Vibrational Spectra of Dense Hydrous Magnesium Silicates. Physics and Chemistry of Minerals, 23(6): 361–376.  https://doi.org/10.1007/bf00199502 CrossRefGoogle Scholar
  18. Dasgupta, R., Hirschmann, M. M., 2010. The Deep Carbon Cycle and Melting in Earth’s Interior. Earth and Planetary Science Letters, 298(1/2): 1–13.  https://doi.org/10.1016/j.epsl.2010.06.039 CrossRefGoogle Scholar
  19. Dorfman, S. M., Badro, J., Nabiei, F., et al., 2018. Carbonate Stability in the Reduced Lower Mantle. Earth and Planetary Science Letters, 489: 84–91.  https://doi.org/10.1016/j.epsl.2018.02.035 CrossRefGoogle Scholar
  20. Dorogokupets, P. I., 2007. Equation of State of Magnesite for the Conditions of the Earth’s Lower Mantle. Geochemistry International, 45(6): 561–568.  https://doi.org/10.1134/s0016702907060043 CrossRefGoogle Scholar
  21. Dorogokupets, P. T., Oganov, A. R., 2004. Intrinsic Anharmonicity in Equations of State of SOLIDS and Minerals. Doklady Earth Sciences, 395(2): 238–241Google Scholar
  22. Dove, M. T., Powell, B. M., 1989. Neutron Diffraction Study of the Tricritical Orientational Order/disorder Phase Transition in Calcite at 1 260 K. Physics and Chemistry of Minerals, 16(5): 503–507.  https://doi.org/10.1007/bf00197019 CrossRefGoogle Scholar
  23. Dove, M. T., Swainson, I. P., Powell, B. M., et al., 2005. Neutron Powder Diffraction Study of the Orientational Order-Disorder Phase Transition in Calcite, CaCO3. Physics and Chemistry of Minerals, 32(7): 493–503.  https://doi.org/10.1007/s00269-005-0026-1 CrossRefGoogle Scholar
  24. Effenberger, H., Mereiter, K., Zemann, J., 1981. Crystal Structure Refinements of Magnesite, Calcite, Rhodochrosite, Siderite, Smithonite, and Dolomite, with Discussion of some Aspects of the Stereochemistry of Calcite Type Carbonates. Zeitschrift für Kristallographie-Crystalline Materials, 156(3/4): 233–243.  https://doi.org/10.1524/zkri.1981.156.3-4.233 Google Scholar
  25. Fahad, M., Iqbal, Y., Riaz, M., et al., 2016. Metamorphic Temperature Investigation of Coexisting Calcite and Dolomite Marble-Examples from Nikani Ghar Marble and Nowshera Formation, Peshawar Basin, Pakistan. Journal of Earth Science, 27(6): 989–997.  https://doi.org/10.1007/s12583-015-0643-7 CrossRefGoogle Scholar
  26. Fahad, M., Saeed, S., 2018. Determination and Estimation of Magnesium Content in the Single Phase Magnesium-Calcite [Ca(1-x)MgxCO3(S)] Using Electron Probe Micro-Analysis (EPMA) and X-Ray Diffraction (XRD). Geosciences Journal, 22(2): 303–312.  https://doi.org/10.1007/s12303-017-0059-8 CrossRefGoogle Scholar
  27. Falini, G., Fermani, S., Gazzano, M., et al., 1998. Structure and Morphology of Synthetic Magnesium Calcite. Journal of Materials Chemistry, 8(4): 1061–1065.  https://doi.org/10.1039/a707893e CrossRefGoogle Scholar
  28. Fei, Y., 1995. Thermal Expansion. In: Ahrens. T. J., ed., Mineral Physics & Crystallography: A Handbook of Physical Constants, Volume 2. American Geophysical Union, Washington, D.C. 29–44.  https://doi.org/10.1029/rf002 Google Scholar
  29. Fiquet, G., Guyot, F., Itie, J. P., 1994. High-Pressure X-Ray Diffraction Study of Carbonates: MgCO3, CaMg(CO3)2, and CaCO3. American Mineralogist, 79(1–2): 15–23Google Scholar
  30. Fiquet, G., Reynard, B., 1999. High-Pressure Equation of State of Magnesite; New Data and a Reappraisal. American Mineralogist, 84(5/6): 856–860.  https://doi.org/10.2138/am-1999-5-619 CrossRefGoogle Scholar
  31. Fiquet, G., Richet, P., Montagnac, G., 1999. High-Temperature Thermal Expansion of Lime, Periclase, Corundum and Spinel. Physics and Chemistry of Minerals, 27(2): 103–111.  https://doi.org/10.1007/s002690050246 CrossRefGoogle Scholar
  32. Fujimori, H., Komatsu, H., Ioku, K., et al., 2002. Anharmonic Lattice Mode of Ca2SiO4: Ultraviolet Laser Raman Spectroscopy at High Temperatures. Physical Review B, 66(6): 064306.  https://doi.org/10.1103/physrevb.66.064306 CrossRefGoogle Scholar
  33. Gong, Q., Deng, J., Wang, Q., et al., 2010. Experimental Determination of Calcite Dissolution Rates and Equilibrium Concentrations in Deionized Water Approaching Calcite Equilibrium. Journal of Earth Science, 21(4): 402–411.  https://doi.org/10.1007/s12583-010-0103-3 CrossRefGoogle Scholar
  34. Gillet, P., Guyot, F., Malezieux, J. M., 1989. High-Pressure, High-Temperature Raman Spectroscopy of Ca2GeO4 (Olivine Form): Some Insights on Anharmonicity. Physics of the Earth and Planetary Interiors, 58(2/3): 141–154.  https://doi.org/10.1016/0031-9201(89)90050-2 CrossRefGoogle Scholar
  35. Gillet, P., Biellmann, C., Reynard, B., et al., 1993. Raman Spectroscopic Studies of Carbonates Part I: High-Pressure and High-Temperature Behaviour of Calcite, Magnesite, Dolomite and Aragonite. Physics and Chemistry of Minerals, 20(1): 1–18.  https://doi.org/10.1007/bf00202245 CrossRefGoogle Scholar
  36. Gillet, P., McMillan, P., Schott, J., et al., 1996. Thermodynamic Properties and Isotopic Fractionation of Calcite from Vibrational Spectroscopy of 18O-Substituted Calcite. Geochimica et Cosmochimica Acta, 60(18): 3471–3485.  https://doi.org/10.1016/0016-7037(96)00178-0 CrossRefGoogle Scholar
  37. Grzechnik, A., Simon, P., Gillet, P., et al., 1999. An Infrared Study of MgCO3 at High Pressure. Physica B: Condensed Matter, 262(1/2): 67–73.  https://doi.org/10.1016/s0921-4526(98)00437-2CrossRefGoogle Scholar
  38. Hazen, R. M., Downs, R. T., Jones, A. P., et al., 2013. Carbon Mineralogy and Crystal Chemistry. Reviews in Mineralogy and Geochemistry, 75(1): 7–46.  https://doi.org/10.2138/rmg.2013.75.2 CrossRefGoogle Scholar
  39. Holland, T. J. B., Redfern, S. A. T., 1997. Unit Cell Refinement from Powder Diffraction Data: The Use of Regression Diagnostics. Mineralogical Magazine, 61(404): 65–77.  https://doi.org/10.1180/minmag.1997.061.404.07 CrossRefGoogle Scholar
  40. Holland, T. J. B., Powell, R., 2004. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309–343.  https://doi.org/10.1111/j.1525-1314.1998.00140.x CrossRefGoogle Scholar
  41. Isshiki, M., Irifune, T., Hirose, K., et al., 2004. Stability of Magnesite and Its High-Pressure Form in the Lowermost Mantle. Nature, 427(6969): 60–63.  https://doi.org/10.1038/nature02181 CrossRefGoogle Scholar
  42. Koch-Müller, M., Jahn, S., Birkholz, N., et al., 2016. Phase Transitions in the System CaCO3 at High P and T Determined by in Situ Vibrational Spectroscopy in Diamond Anvil Cells and First-Principles Simulations. Physics and Chemistry of Minerals, 43(8): 545–561.  https://doi.org/10.1007/s00269-016-0815-8 CrossRefGoogle Scholar
  43. Lane, M. D., Christensen, P. R., 1997. Thermal Infrared Emission Spectroscopy of Anhydrous Carbonates. Journal of Geophysical Research: Planets, 102(E11): 25581–25592.  https://doi.org/10.1029/97je02046 CrossRefGoogle Scholar
  44. Lin, C. C., 2013. Elasticity of Calcite: Thermal Evolution. Physics and Chemistry of Minerals, 40(2): 157–166.  https://doi.org/10.1007/s00269-012-0555-3 CrossRefGoogle Scholar
  45. Litasov, K. D., Fei, Y. W., Ohtani, E., et al., 2008. Thermal Equation of State of Magnesite to 32 GPa and 2 073 K. Physics of the Earth and Planetary Interiors, 168(3/4): 191–203.  https://doi.org/10.1016/j.pepi.2008.06.018 CrossRefGoogle Scholar
  46. Liu, C. J., Zheng, H. F., Wang, D. J., 2017. Raman Spectroscopic Study of Calcite III to Aragonite Transformation under High Pressure and High Temperature. High Pressure Research, 37(4): 545–557.  https://doi.org/10.1080/08957959.2017.1384824 CrossRefGoogle Scholar
  47. Liu, J., Lin, J. F., Mao, Z., et al., 2014. Thermal Equation of State and Spin Transition of Magnesiosiderite at High Pressure and Temperature. American Mineralogist, 99(1): 84–93.  https://doi.org/10.2138/am.2014.4553 CrossRefGoogle Scholar
  48. Liu, L. G., Mernagh, T. P., 1990. Phase Transitions and Raman Spectra of Calcite at High Pressures and Room Temperature. American Mineralogist, 75(7-8): 801–806Google Scholar
  49. Liu, Q., Tossell, J. A., Liu, Y., 2010. On the Proper Use of the Bigeleisen-Mayer Equation and Corrections to It in the Calculation of Isotopic Fractionation Equilibrium Constants. Geochimica et Cosmochimica Acta, 74(24): 6965–6983.  https://doi.org/10.1016/j.gca.2010.09.014 CrossRefGoogle Scholar
  50. Mao, Z., Armentrout, M., Rainey, E., et al., 2011. Dolomite III: A New Candidate Lower Mantle Carbonate. Geophysical Research Letters, 38(22): L22303.  https://doi.org/10.1029/2011gl049519 CrossRefGoogle Scholar
  51. Markgraf, S. A., Reeder, R. J., 1985. High-Temperature Structure Refinements of Calcite and Magnesite. American Mineralogist, 70(5–6): 590–600Google Scholar
  52. Matas, J., Gillet, P., Ricard, Y., et al., 2000. Thermodynamic Properties of Carbonates at High Pressures from Vibrational Modelling. European Journal of Mineralogy, 12(4): 703–720.  https://doi.org/10.1127/ejm/12/4/0703 CrossRefGoogle Scholar
  53. Megaw, H. D., 1973. Crystal Structures: A Working Approach. Saunders, London. 563Google Scholar
  54. Merlini, M., Sapelli, F., Fumagalli, P., et al., 2016. High-Temperature and High-Pressure Behavior of Carbonates in the Ternary Diagram CaCO3-MgCO3-FeCO3. American Mineralogist, 101(6): 1423–1430.  https://doi.org/10.2138/am-2016-5458 CrossRefGoogle Scholar
  55. Oganov, A. R., Dorogokupets, P. I., 2004. Intrinsic Anharmonicity in Equations of State and Thermodynamics of Solids. Journal of Physics: Condensed Matter, 16(8): 1351–1360.  https://doi.org/10.1088/0953-8984/16/8/018 Google Scholar
  56. Oganov, A. R., Glass, C. W., Ono, S., 2006. High-Pressure Phases of CaCO3: Crystal Structure Prediction and Experiment. Earth and Planetary Science Letters, 241(1/2): 95–103.  https://doi.org/10.1016/j.epsl.2005.10.014 CrossRefGoogle Scholar
  57. Paquette, J., Reeder, R. J., 1990. Single-Crystal X-Ray Structure Refinements of Two Biogenic Magnesian Calcite Crystals. American Mineralogist, 75(9): 1151–1158Google Scholar
  58. Pickard, C. J., Needs, R. J., 2015. Structures and Stability of Calcium and Magnesium Carbonates at Mantle Pressures. Physical Review B, 91(10): 104101CrossRefGoogle Scholar
  59. Polyakov, V. B., 1998. On Anharmonic and Pressure Corrections to the Equilibrium Isotopic Constants for Minerals. Geochimica et Cosmochimica Acta, 62(18): 3077–3085.  https://doi.org/10.1016/s0016-7037(98)00220-8CrossRefGoogle Scholar
  60. Polyakov, V. B., Kharlashina, N. N., 1994. Effect of Pressure on Equilibrium Isotopic Fractionation. Geochimica et Cosmochimica Acta, 58(21): 4739–4750.  https://doi.org/10.1016/0016-7037(94)90204-6 CrossRefGoogle Scholar
  61. Redfern, S. A. T., Angel, R. J., 1999. High-Pressure Behaviour and Equation of State of Calcite, CaCO3. Contributions to Mineralogy and Petrology, 134(1): 102–106.  https://doi.org/10.1007/s004100050471 CrossRefGoogle Scholar
  62. Reynard, B., Caracas, R., 2009. D/H Isotopic Fractionation between Brucite Mg(OH)2 and Water from First-Principles Vibrational Modeling. Chemical Geology, 262(3/4): 159–168.  https://doi.org/10.1016/j.chemgeo.2009.01.007 CrossRefGoogle Scholar
  63. Reeder, R. J., 1983. Crystal Chemistry of the Rhombohedral Carbonates. Reviews in Mineralogy and Geochemistry, 11(1): 1–47Google Scholar
  64. Reeder, R. J., Markgraf, S. A., 1986. High-Temperature Crystal Chemistry of Dolomite. American Mineralogist, 71(5–6): 795–804Google Scholar
  65. Ross, N. L., 1997. The Equation of State and High-Pressure Behavior of Magnesite. American Mineralogist, 82(7/8): 682–688.  https://doi.org/10.2138/am-1997-7-805 CrossRefGoogle Scholar
  66. Ross, N. L., Reeder, R. J., 1992. High-Pressure Structural Study of Dolomite and Ankerite. American Mineralogist, 77(3–4): 412–421Google Scholar
  67. Santillán, J., 2005. An Infrared Study of Carbon-Oxygen Bonding in Magnesite to 60 GPa. American Mineralogist, 90(10): 1669–1673.  https://doi.org/10.2138/am.2005.1703 CrossRefGoogle Scholar
  68. Santillán, J., Williams, Q., 2004. A High-Pressure Infrared and X-Ray Study of FeCO3 and MnCO3: Comparison with CaMg(CO3)2-Dolomite. Physics of the Earth and Planetary Interiors, 143–144: 291–304.  https://doi.org/10.1016/j.pepi.2003.06.007 CrossRefGoogle Scholar
  69. Santillán, J., Williams, Q., Knittle, E., 2003. Dolomite-II: A High-Pressure Polymorph of CaMg(CO3)2. Geophysical Research Letters, 30(2): 1054.  https://doi.org/10.1029/2002gl016018 CrossRefGoogle Scholar
  70. Stekiel, M., Nguyen-Thanh, T., Chariton, S., et al., 2017. High Pressure Elasticity of FeCO3-MgCO3 Carbonates. Physics of the Earth and Planetary Interiors, 271: 57–63.  https://doi.org/10.1016/j.pepi.2017.08.004 CrossRefGoogle Scholar
  71. Suito, K., Namba, J., Horikawa, T., et al., 2001. Phase Relations of CaCO3 at High Pressure and High Temperature. American Mineralogist, 86(9): 997–1002.  https://doi.org/10.2138/am-2001-8-906 CrossRefGoogle Scholar
  72. Thomson, A. R., Walter, M. J., Kohn, S. C., et al., 2016. Slab Melting as a Barrier to Deep Carbon Subduction. Nature, 529(7584): 76–79.  https://doi.org/10.1038/nature16174 CrossRefGoogle Scholar
  73. Titschack, J., Goetz-Neunhoeffer, F., Neubauer, J., 2011. Magnesium Quantification in Calcites [(Ca, Mg)CO3] by Rietveld-Based XRD Analysis: Revisiting a Well-Established Method. American Mineralogist, 96(7): 1028–1038.  https://doi.org/10.2138/am.2011.3665 CrossRefGoogle Scholar
  74. Urey, H. C., 1947. The Thermodynamic Properties of Isotopic Substances. Journal of the Chemical Society (Resumed), 562–581.  https://doi.org/10.1039/jr9470000562 Google Scholar
  75. Valenzano, L., Noël, Y., Orlando, R., et al., 2007. Ab Initio Vibrational Spectra and Dielectric Properties of Carbonates: Magnesite, Calcite and Dolomite. Theoretical Chemistry Accounts, 117(5/6): 991–1000.  https://doi.org/10.1007/s00214-006-0213-2 CrossRefGoogle Scholar
  76. Wang, A. L., Pasteris, J. D., Meyer, H. O. A., et al., 1996. Magnesite-Bearing Inclusion Assemblage in Natural Diamond. Earth and Planetary Science Letters, 141(1/2/3/4): 293–306.  https://doi.org/10.1016/0012-821x(96)00053-2 CrossRefGoogle Scholar
  77. Wang, G., Wang, J., Wang, Z., et al., 2017. Carbon Isotope Gradient of the Ediacaran Cap Carbonate in the Shennongjia Area and Its Implications for Ocean Stratification and Palaeogeography. Journal of Earth Science. 28(2): 42–56.  https://doi.org/10.1007/s12583-016-0923-x Google Scholar
  78. Wang, M. L., Shi, G. H., Qin, J. Q., et al., 2018. Thermal Behaviour of Calcite-Structure Carbonates: A Powder X-Ray Diffraction Study between 83 and 618 K. European Journal of Mineralogy, 30(5): 939–949.  https://doi.org/10.1127/ejm/2018/0030-2768 CrossRefGoogle Scholar
  79. Wang, X., Ye, Y., Wu, X., et al., 2019. High-Temperature Raman and FTIR Study of Aragonite-Group Carbonates. Physics and Chemistry of Minerals, 46(1): 51–62.  https://doi.org/10.1007/s00269-018-0986-6 CrossRefGoogle Scholar
  80. Wei, S. H., Xu, X. X., 2018. Boosting Photocatalytic Water Oxidation Reactions over Strontium Tantalum Oxynitride by Structural Laminations. Applied Catalysis B: Environmental, 228: 10–18.  https://doi.org/10.1016/j.apcatb.2018.01.071 CrossRefGoogle Scholar
  81. Weir, C. E., Lippincott, E. R., van Valkenburg, A., et al., 1959. Infrared Studies in the 1- to 15-Micron Region to 30,000 Atmospheres. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 63A(1): 55–62.  https://doi.org/10.6028/jres.063a.003 CrossRefGoogle Scholar
  82. White, W. B., 1974. The Carbonate Minerals. In: Farmer, V. C., ed., The Infrared Spectra of Minerals. Mineralogical Society of Great Britain and Ireland, London. 227–284CrossRefGoogle Scholar
  83. Yang, J., Mao, Z., Lin, J.-F., et al., 2014. Single-Crystal Elasticity of the Deep-Mantle Magnesite at High Pressure and Temperature. Earth and Planetary Science Letters, 392: 292–299.  https://doi.org/10.1016/j.epsl.2014.01.027 CrossRefGoogle Scholar
  84. You, X. L., Jia, W. Q., Xu, F., et al., 2018. Mineralogical Characteristics of Ankerite and Mechanisms of Primary and Secondary Origins. Earth Science, 43(11): 4046–4055 (in Chinese with English Abstract).  https://doi.org/10.3799/dqkx.2018.152 Google Scholar
  85. Zhang, J., Martinez, I., Guyot, F., et al., 1997. X-Ray Diffraction Study of Magnesite at High Pressure and High Temperature. Physics and Chemistry of Minerals, 24(2): 122–130.  https://doi.org/10.1007/s002690050025s CrossRefGoogle Scholar
  86. Zhang, J., Reeder, R., 1999. Comparative Compressibilities of Calcite-Structure Carbonates: Deviations from Empirical Relations. American Mineralogist, 84(5–6): 861–870.  https://doi.org/10.2138/am-1999-5-620 CrossRefGoogle Scholar
  87. Zhang, X., Yang, S. Y., Zhao, H., et al., 2019. Effect of Beam Current and Diameter on Electron Probe Microanalysis of Carbonate Minerals. Journal of Earth Science, 30(4): 834–842.  https://doi.org/10.1007/s12583-017-0939-x CrossRefGoogle Scholar
  88. Zheng, R., Pan, Y., Zhao, C., et al., 2013. Carbon and Oxygen Isotope Stratigraphy of the Oxfordian Carbonate Rocks in Amu Darya Basin. Journal of Earth Science, 24(1): 42–56.  https://doi.org/10.1007/s12583-013-0315-4 CrossRefGoogle Scholar
  89. Zhu, Y. F., Ogasawara, Y., 2002. Carbon Recycled into Deep Earth: Evidence from Dolomite Dissociation in Subduction-Zone Rocks. Geology, 30(10): 947–950.  https://doi.org/10.1130/0091-7613(2002)030%3c0947:cridee%3e2.0.co;2 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina
  2. 2.Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations