Advertisement

Journal of Earth Science

, Volume 30, Issue 5, pp 1049–1058 | Cite as

Geomorphologic Characteristics of Polygonal Features on Chloride-Bearing Deposits on Mars: Implications for Martian Hydrology and Astrobiology

  • Binlong Ye
  • Jun HuangEmail author
  • Joseph Michalski
  • Long Xiao
Paleontology, Environmental Geology and Planetary Geology
  • 32 Downloads

Abstract

Over 600 chloride-bearing deposits (chlorides) have been identified on the southern highlands of Mars. These chlorides have critical implications for hydrology and astrobiology: they are indicators of an evaporating super saturated solution, and they could have provided habitat environments for halophilic microorganisms and preserved organic matter. One of the prominent geomorphology characteristics of these chloride-bearing regions is the polygonal features within them. The origin of these polygonal features is still in debate. In this study, we have surveyed 153 locations of chlorides using 441 high resolution imaging science experiment (HiRISE) images to characterize the geomorphology of polygonal features. We identified 3 types of polygonal features of distinct geomorphologic characteristics: fractures, raised ridges, and transitional polygons between fractures and raised ridges. We evaluate previously proposed hypotheses of the formation of the polygonal features, and suggest that the 3 types of polygonal features are indicators of different stages of salt crust formation. Salt crust is usually formed through multiple groundwater activities, and it often occurs in playa environment on Earth. The unique hydrological and astrobiological implications of the chlorides with polygonal features make these deposits of high priority for future landed on and/or sample return exploration missions of Mars.

Key words

chlorides polygonal feature playa hydrology astrobiology Mars 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank two anonymous reviewers for constructive comments that help to improve the quality of the manuscript. JMARS (https://jmars.asu.edu) and ArcGIS are used in data query, analysis and visualization. All the remote sensing data of Mars are available at the Planetary Data System (https://pds.jpl.nasa.gov). Jun Huang was supported by the National Scientific Foundation of China (Nos. 41403052, 41773061, 41830214), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Nos. CUGL160402, CUG2017G02) and the Lunar and Planetary Science Laboratory, Macau University of Science and Technology Partner Laboratory of Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences (Nos. 039/2013/A2, 121/2017/A3). Binlong Ye was supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates (No. 201610491122). We thank Mr. Jiang Wang and Ms. Ting Huang for their constructive comments of the Qaidam Basin and astrobiology application. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1212-2.

References Cited

  1. Andrews-Hanna, J. C., Lewis, K. W., 2011. Early Mars Hydrology: 2. Hydrological Evolution in the Noachian and Hesperian Epochs. Journal of Geophysical Research, 116(E2): E02007.  https://doi.org/10.1029/2010je003709 Google Scholar
  2. Anglés, A., Li, Y. L., 2017. The Western Qaidam Basin as a Potential Martian Environmental Analogue: An Overview. Journal of Geophysical Research: Planets, 122(5): 856–888.  https://doi.org/10.1002/2017je005293 Google Scholar
  3. Bandfield, J. L., 2004. Atmospheric Correction and Surface Spectral Unit Mapping Using Thermal Emission Imaging System Data. Journal of Geophysical Research, 109(E10): E10008.  https://doi.org/10.1029/2004je002289 Google Scholar
  4. Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., 2001. Mars Global Surveyor Thermal Emission Spectrometer Experiment: Investigation Description and Surface Science Results. Journal of Geophysical Research: Planets, 106(E10): 23823–23871.  https://doi.org/10.1029/2000je001370 Google Scholar
  5. Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al., 2004. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 110(1/2): 85–130.  https://doi.org/10.1023/b:spac.0000021008.16305.94 Google Scholar
  6. Christiansen, F. W., 1963. Polygonal Fracture and Fold Systems in the Salt Crust, Great Salt Lake Desert, Utah. Science, 139(3555): 607–609.  https://doi.org/10.1126/science.139.3555.607 Google Scholar
  7. Davila, A. F., Duport, L. G., Melchiorri, R., et al., 2010. Hygroscopic Salts and the Potential for Life on Mars. Astrobiology, 10(6): 617–628,  https://doi.org/10.1089/ast.2009.0421.Google Scholar
  8. Ebinger, E., Mustard, J., 2015. Linear Ridges in the Nilosyrtis Region of Mars: Implications for Subsurface Fluid Flow. Lunar and Planetary Science Conference, The WoodlandsGoogle Scholar
  9. Edwards, C. S., Christensen, P. R., Hill, J, 2011. Mosaicking of Global Planetary Image Datasets: 2. Modeling of Wind Streak Thicknesses Observed in Thermal Emission Imaging System (THEMIS) Daytime and Nighttime Infrared Data. Journal of Geophysical Research, 116(E10): E10005.  https://doi.org/10.1029/2011je003857 Google Scholar
  10. Ehlmann, B. L., Swayze, G. A., Milliken, R. E., et al., 2016. Discovery of Alunite in Cross Crater, Terra Sirenum, Mars: Evidence for Acidic, Sulfurous Waters. American Mineralogist, 101(7): 1527–1542.  https://doi.org/10.2138/am-2016-5574 Google Scholar
  11. El-Maarry, M. R., Pommerol, A., Thomas, N., 2013. Analysis of Polygonal Cracking Patterns in Chloride-Bearing Terrains on Mars: Indicators of Ancient Playa Settings. Journal of Geophysical Research: Planets, 118(11): 2263–2278.  https://doi.org/10.1002/2013je004463 Google Scholar
  12. El-Maarry, M. R., Watters, W., McKeown, N. K., et al., 2014. Potential Desiccation Cracks on Mars: A Synthesis from Modeling, Analogue-Field Studies, and Global Observations. Icarus, 241: 248–268.  https://doi.org/10.1016/j.icarus.2014.06.033 Google Scholar
  13. Fassett, C. I., Head, J. W. III, 2008. Valley Network-Fed, Open-Basin Lakes on Mars: Distribution and Implications for Noachian Surface and Subsurface Hydrology. Icarus, 198(1): 37–56.  https://doi.org/10.1016/j.ica-rus.2008.06.016 Google Scholar
  14. Fish, S. A., Shepherd, T. J., McGenity, T. J., et al., 2002. Recovery of 16S Ribosomal RNA Gene Fragments from Ancient Halite. Nature, 417(6887): 432–436.  https://doi.org/10.1038/417432a Google Scholar
  15. Gillespie, A. R., Kahle, A. B., Walker, R. E., 1986. Color Enhancement of Highly Correlated Images. I. Decorrelation and HSI Contrast Stretches. Remote Sensing of Environment, 20(3): 209–235.  https://doi.org/10.1016/0034-4257(86)90044-l Google Scholar
  16. Glotch, T. D., Bandfield, J. L., Tornabene, L. L., et al., 2010. Distribution and Formation of Chlorides and Phyllosilicates in Terra Sirenum, Mars. Geophysical Research Letters, 37(16): 127–137.  https://doi.org/10.1029/2010gl044557 Google Scholar
  17. Glotch, T. D., Bandfield, J. L., Wolff, M. J., et al., 2016. Constraints on the Composition and Particle Size of Chloride Salt-Bearing Deposits on Mars. Journal of Geophysical Research: Planets, 121(3): 454–471.  https://doi.org/10.1002/2015je004921 Google Scholar
  18. Griffith, J. D., Willcox, S., Powers, D. W., et al., 2008. Discovery of Abundant Cellulose Microfibers Encased in 250 Ma Permian Halite: A Macromolecular Target in the Search for Life on other Planets. Astrobiology, 8(2): 215–228.  https://doi.org/10.1089/ast.2007.0196 Google Scholar
  19. Head, J. W., Mustard, J. F., 2006. Breccia Dikes and Crater-Related Faults in Impact Craters on Mars: Erosion and Exposure on the Floor of a Crater 75 km in Diameter at the Dichotomy Boundary. Meteoritics & Planetary Science, 41(10): 1675–1690.  https://doi.org/10.1111/j.1945-5100.2006.tb00444.x Google Scholar
  20. Herkenhoff, K. E., Byrne, S., Russell, P. S, et al., 2007. Meter-Scale Morphology of the North Polar Region of Mars. Science, 317(5845): 1711–1715.  https://doi.org/10.1126/science.1143544 Google Scholar
  21. Huang, J., Salvatore, M., Edwards, C., et al., 2018. A Complex Fluviolacustrine Environment on Early Mars and Its Astrobiological Potentials. Astrobiology, 18(8): 1081–1091.  https://doi.org/10.1089/ast.2017.1757 Google Scholar
  22. Hynek, B. M., Beach, M., Hoke, M. R. T., 2010. Updated Global Map of Martian Valley Networks and Implications for Climate and Hydrologic Processes. Journal of Geophysical Research, 115(E9): E9008.  https://doi.org/10.1029/2009je003548 Google Scholar
  23. Hynek, B. M., Osterloo, M. K., Kierein-Young, K. S., 2015. Late-Stage Formation of Martian Chloride Salts through Ponding and Evaporation. Geology, 43(9): 787–790.  https://doi.org/10.1130/g36895.l Google Scholar
  24. Jensen, H. B., Glotch, T. D., 2011. Investigation of the Near-Infrared Spectral Character of Putative Martian Chloride Deposits. Journal of Geophysical Research, 116(E12): E00J03.  https://doi.org/10.1029/2011je003887 Google Scholar
  25. Kerber, L., Dickson, J. L., Head, J. W., et al., 2017. Polygonal Ridge Networks on Mars: Diversity of Morphologies and the Special Case of the Eastern Medusae Fossae Formation. Icarus, 281: 200–219.  https://doi.org/10.1016/j.icarus.2016.08.020 Google Scholar
  26. Kirk, R. L., Howington-Kraus, E., Rosiek, M. R, et al., 2008. Ultrahigh Resolution Topographic Mapping of Mars with MRO HiRISE Stereo Images: Meter-Scale Slopes of Candidate Phoenix Landing Sites. Journal of Geophysical Research, 113(E12): E00A24.  https://doi.org/10.1029/2007je003000 Google Scholar
  27. Krinsley, D. B., 1970. A Geomorphological and Paleoclimatological Study of the Playas of Iran. Journal of Hydrology, 16(1): 66.  https://doi.org/10.1016/0022-1694(72)90188-6 Google Scholar
  28. Levy, J. S., Head, J. W., Marchant, D. R., 2009b. Concentric Crater Fill in Utopia Planitia: History and Interaction between Glacial “Brain Terrain” and Periglacial Mantle Processes. Icarus, 202(2): 462–476.  https://doi.org/10.1016/j.icarus.2009.02.018 Google Scholar
  29. Levy, J., Head, J., Marchant, D., 2009a. Thermal Contraction Crack Polygons on Mars: Classification, Distribution, and Climate Implications from HiRISE Observations. Journal of Geophysical Research, 114(E1): E01007.  https://doi.org/10.1029/2008je003273 Google Scholar
  30. Malin, M. C., Bell, J. F. III, Cantor, B. A., et al., 2007. Context Camera Investigation on Board the Mars Reconnaissance Obiter. Journal ofGeophysical Research, 112(E5): E05S04.  https://doi.org/10.1029/2006je002808 Google Scholar
  31. Mangold, N., 2005. High Latitude Patterned Grounds on Mars: Classification, Distribution and Climatic Control. Icarus, 174(2): 336–359.  https://doi.org/10.1016/j.icarus.2004.07.030 Google Scholar
  32. Mangold, N., Poulet, F., Mustard, J. F., et al., 2007. Mineralogy of the Nili Fossae Region with OMEGA/Mars Express Data: 2. Aqueous Alteration of the Crust. Journal of Geophysical Research: Planets, 112(E8): E08S04.  https://doi.org/10.1029/2006je002835 Google Scholar
  33. McEwen, A. S., Eliason, E. M., Bergstrom, J. W., et al., 2007. Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 112(E5): E05S02.  https://doi.org/10.1029/2005je002605 Google Scholar
  34. Mellon, M. T., Arvidson, R. E., Marlow, J. J., et al., 2008. Periglacial Land-forms at the Phoenix Landing Site and the Northern Plains of Mars. Journal of Geophysical Research, 113(E4): E00A23.  https://doi.org/10.1029/2007je003039 Google Scholar
  35. Mellon, M. T., Feldman, W. C., Prettyman, T. H., 2004. The Presence and Stability of Ground Ice in the Southern Hemisphere of Mars. Icarus, 169(2): 324–340.  https://doi.org/10.1016/j.icarus.2003.10.022 Google Scholar
  36. Mellon, M. T., Jakosky, B. M., 1995. The Distribution and Behavior of Martian Ground Ice during Past and Present Epochs. Journal of Geophysical Research, 100(E6): 11781–11799.  https://doi.org/10.1029/95je01027 Google Scholar
  37. Morgenstern, A., Hauber, E., Reiss, D., et al., 2007. Deposition and Degradation of a Volatile-Rich Layer in Utopia Planitia and Implications for Climate History on Mars. Journal of Geophysical Research, 112(E6): E06010.  https://doi.org/10.1029/2006je002869 Google Scholar
  38. Mormile, M. R., Biesen, M. A, Gutierrez, M. C., et al., 2003. Isolation of Halobacterium Salinarum Retrieved Directly from Halite Brine Inclusions. Environmental Microbiology, 5(11): 1094–1102.  https://doi.org/10.1046/j.1462-2920.2003.00509.x Google Scholar
  39. Murchie, S. L., Mustard, J. F., Ehlmann, B. L., et al., 2009. A Synthesis of Martian Aqueous Mineralogy after 1 Mars Year of Observations from the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 114(E2): E00D06.  https://doi.org/10.1029/2009je003342 Google Scholar
  40. Mutch, T. A., Binder, A. B., Huck, F. O., et al., 1976. The Surface of Mars: The View from the Viking 1 Lander. Science, 193(4255): 791–801.  https://doi.org/10.1126/science.193.4255.791 Google Scholar
  41. Okubo, C. H., McEwen, A. S., 2007. Fracture-Controlled Paleo-Fluid Flow in Candor Chasma, Mars. Science, 315(5814): 983–985.  https://doi.org/10.1126/science.1136855 Google Scholar
  42. Osterloo, M. M., Anderson, F. S., Hamilton, V. E., et al., 2010. Geologic Context of Proposed Chloride-Bearing Materials on Mars. Journal of Geophysical Research, 115(E10): E10012.  https://doi.org/10.1029/2010je003613 Google Scholar
  43. Osterloo, M. M., Hamilton, V. E., Bandfield, J. L., et al., 2008. Chloride-Bearing Materials in the Southern Highlands of Mars. Science, 319(5870): 1651–1654.  https://doi.org/10.1126/science.1150690 Google Scholar
  44. Park, J. S., Vreeland, R. H., Cho, B. C., et al., 2009. Haloarchaeal Diversity in 23, 121 and 419 MYA Salts. Geobiology, 7(5): 515–523.  https://doi.org/10.1111/j.1472-4669.2009.00218.x Google Scholar
  45. Putzig, N. E., Mellon, M. T., Kretke, K. A., et al, 2005. Global Thermal Inertia and Surface Properties of Mars from the MGS Mapping Mission. Icarus, 173(2): 325–341. {rs https://doi.org url}/10.1016/j.icarus.2004.08.017Google Scholar
  46. Radax, C., Gruber, C., Stan-Lotter, H., 2001. Novel Haloarchaeal 16S RRNA Gene Sequences from Alpine Permo-Triassic Rock Salt. Extremophiles, 5(4): 221–228.  https://doi.org/10.1007/s007920100192 Google Scholar
  47. Rosen, M. R., 1994. The Importance of Groundwater in Playas: A Review of Playa Classification and the Sedimentology and Hydrology of Playas, GSA Special Papers 289, Geological Society of America, Boulder, Co.Google Scholar
  48. Ruesch, O., Poulet, F., Vincendon, M., et al, 2012. Compositional Investigation of the Proposed Chloride-Bearing Materials on Mars Using Near-Infrared Orbital Data from OMEGA/MEx. Journal of Geophysical Research: Planets, 117(E11): E00J13.  https://doi.org/10.1029/2012je004108 Google Scholar
  49. Saper, L., Mustard, J. F., 2013. Extensive Linear Ridge Networks in Nili Fossae and Nilosyrtis, Mars: Implications for Fluid Flow in the Ancient Crust. Geophysical Research Letters, 40(2): 245–249.  https://doi.org/10.1002/grl.50106 Google Scholar
  50. Schubert, B. A., Lowenstein, T. K., Timofeeff, M. N, 2009. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California. Astrobiology, 9(5): 467–482.  https://doi.org/10.1089/ast.2008.0282 Google Scholar
  51. Shean, D. E., Alexandrov, O., Moratto, Z. M., et al, 2016. An Automated, Open-Source Pipeline for Mass Production of Digital Elevation Models (DEMs) from Very-High-Resolution Commercial Stereo Satellite Imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 116: 101–117. {rs https://doi.org url}/10.1016/j.isprsjprs.2016.03.012Google Scholar
  52. Soare, R. J., Osinski, G. R., Roehm, C. L., 2008. Thermokarst Lakes and Ponds on Mars in the very Recent (Late Amazonian) Past. Earth and Planetary Science Letters, 272(1/2): 382–393. {rs https://doi.org urs}/10.1016/j.epsl.2008.05.010Google Scholar
  53. Stein, N., Grotzinger, J. P., Schieber, J., et al., 2018. Desiccation Cracks Provide Evidence of Lake Drying on Mars, Sutton Island Member, Murray Formation, Gale Crater: REPLY. Geology, 46(8): e450–e450. {rs https://doi.org url}/10.1130/g45237y.lGoogle Scholar
  54. Stivaletta, N., Barbieri, R., Picard, C., et al., 2009. Astrobiological Significance of the Sabkha Life and Environments of Southern Tunisia. Planetary and Space Science, 57(5/6): 597–605. {rs https://doi.org url}/10.1016/j.pss.2008.10.002Google Scholar
  55. Thomas, D. S. G., 2011. Arid Zone Geomorphology: Process, Form and Change in Drylands. WileyGoogle Scholar
  56. Villanueva, G. L., Mumma, M. J., Novak, R. E., et al., 2015. Strong Water Isotopic Anomalies in the Martian Atmosphere: Probing Current and Ancient Reservoirs. Science, 348(6231): 218–221.  https://doi.org/10.1126/science.aaa3630 Google Scholar
  57. Vreeland, R. H., Jones, J., Monson, A., et al., 2007. Isolation of Live Cretaceous (121-112 Million Years Old) Halophilic Archaea from Primary Salt Crystals. Geomicrobiology Journal, 24(3/4): 275–282.  https://doi.org/10.1080/01490450701456917 Google Scholar
  58. Wang, A. L., Sobron, P., Kong, F., et al., 2018. Dalangtan Saline Playa in a Hyperarid Region on Tibet Plateau: II. Preservation of Salts with High Hydration Degrees in Subsurface. Astrobiology, 18(10): 1254–1276.  https://doi.org/10.1089/ast.2018.1829 Google Scholar
  59. Wang, C. W., Hong, H. L., Li, Z. H., et al., 2013. Climatic and Tectonic Evolution in the North Qaidam since the Cenozoic: Evidence from Sedimen-tology and Mineralogy. Journal of Earth Science, 24(3): 314–327.  https://doi.org/10.1007/sl2583-013-0332-3 Google Scholar
  60. Wray, J. J., Milliken, R. E., Dundas, C. M., et al., 2011. Columbus Crater and other Possible Groundwater-Fed Paleolakes of Terra Sirenum, Mars. Journal of Geophysical Research, 116(E1): E01001.  https://doi.org/10.1029/2010je003694 Google Scholar
  61. Wray, J. J., Murchie, S. L., Squyres, S. W., et al., 2009. Diverse Aqueous Environments on Ancient Mars Revealed in the Southern Highlands. Geology, 37(11): 1043–1046.  https://doi.org/10.1130/g30331a.1 Google Scholar
  62. Xiao, L., Wang, J., Dang, Y. N., et al., 2017. A New Terrestrial Analogue Site for Mars Research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Science Reviews, 164: 84–101.  https://doi.org/10.1016/j.earscirev.2016.11.003 Google Scholar
  63. Yi, L. W., Gu, X. P., Lu, A. H., et al., 2017. Atacamite and Nantokite in Kaerqueka Copper Deposit of Qimantag Area: Evidence for Cenozoic Climate Evolution of the Qaidam Basin. Journal of Earth Science, 28(3): 492–499.  https://doi.org/10.1007/sl2583-017-0548-8 Google Scholar
  64. Zanetti, M., Hiesinger, H., Reiss, D., et al., 2010. Distribution and Evolution of Scalloped Terrain in the Southern Hemisphere, Mars. Icarus, 206(2): 691–706. {rs https://doi.org url}/10.1016/j.icarus.2009.09.010Google Scholar
  65. Zeng, F. M., Xiang, S. Y., 2017. Geochronology and Mineral Composition of the Pleistocene Sediments in Xitaijinair Salt Lake Region, Qaidam Basin: Preliminary Results. Journal of Earth Science, 28(4): 622–627.  https://doi.org/10.1007/sl2583-016-0712-6 Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Planetary Science Institute, School of Earth SciencesChina University of GeosciencesWuhanChina
  2. 2.Department of Earth Sciences and Laboratory for Space ResearchUniversity of Hong KongHong KongChina

Personalised recommendations