Advertisement

Journal of Earth Science

, Volume 30, Issue 5, pp 952–963 | Cite as

Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples

  • Wenbin Ning
  • Junpeng WangEmail author
  • Deng Xiao
  • Fenfang Li
  • Bo Huang
  • Dong Fu
Petrology, Mineralogy and Geochemistry
  • 17 Downloads

Abstract

Electron probe microanalysis (EPMA) dating of monazite has been developed over decades. However, limited by the detectability and analytical sensitivity of dating-related elements (Th, Pb, U and Y), the EPMA dating has been restricted to geological research. In this study, various probe currents, beam diameters and counting times have been utilized on a JEOL JXA-8230 electron microprobe to determine the optimal experimental conditions for measuring Th, Pb, U and Y in monazite. The optimal conditions are: (1) accelerating voltage is 15 kV; (2) probe current is 100 nA; (3) beam diameter is 1 μm; (4) the peak and background counting time of U and Pb are 200 and 100 s; and (5) the peak and background counting time of Th and Y are 100 and 50 s. We apply this method to monazite from garnet-bearing biotite gneiss in the Zanhuang area of the Central Orogenic Belt of the North China Craton. The PbO-ThO2* isochron age calculated by EPMA data is 1 812±17 Ma (MSWD=2.06), which is similar to the weighted mean 207Pb/206Pb age (1 805±12 Ma, MSWD=1.07) obtained by LA-ICP-MS. This study suggests that EPMA dating of monazite as a powerful dating technique can be widely used in geochronological study.

Key words

monazite EPMA dating garnet-bearing biotite gneiss Zanhuang area North China Craton geochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 41602234), the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan, China (Nos. CUGL180406, CUGCJ1707), and Open Fund (No. GRMR201901) from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan. We are grateful to Daniel Harlov, Timothy Kusky and Wang Lu for providing valuable suggestions and revising this paper. We also appreciate the editor and two anonymous reviewers for constructive comments, which helped to improve this manuscript significantly. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1020-8.

Supplementary material

12583_2019_1020_MOESM1_ESM.xlsx (14 kb)
Table S1. LA-ICP-MS monazite U-Pb data for garnet-bearing biotite gneiss in the Zanhuang massif, North China Craton.

References Cited

  1. Allaz, J. M., Williams, M. L., Jercinovic, M. J., et al., 2019. Multipoint Background Analysis: Gaining Precision and Accuracy in Microprobe Trace Element Analysis. Microscopy and Microanalysis, 25(1): 30–46.  https://doi.org/10.1017/s1431927618015660 CrossRefGoogle Scholar
  2. Amli, R., Griffin, W. L., 1975. Microprobe Analysis of REE Minerals Using Empirical Correction Factors. American Mineralogist, 60: 599–606.  https://doi.org/10.1007/bf01134160 Google Scholar
  3. Ba, J., Zhang, L., He, C., et al., 2018. Zircon and Monazite Ages Constraints on Devonian Magmatism and Granulite-Facies Metamorphism in the Southern Qaidam Block: Implications for Evolution of Proto- and Paleo-Tethys in East Asia. Journal of Earth Science, 29(5): 1132–1150.  https://doi.org/10.1007/s12583-018-0853-x CrossRefGoogle Scholar
  4. Barth, S., Oberli, F., Meier, M., 1994. Th-Pb versus U-Pb Isotope Systematics in Allanite from Co-Genetic Rhyolite and Granodiorite: Implications for Geochronology. Earth and Planetary Science Letters, 124(1/2/3/4): 149–159.  https://doi.org/10.1016/0012-821x(94)00073-5 CrossRefGoogle Scholar
  5. Bosse, V., Villa, I. M., 2019. Petrochronology and Hygrochronology of Tectono-Metamorphic Events. Gondwana Research, 71: 76–90.  https://doi.org/10.1016/j.gr.2018.12.014 CrossRefGoogle Scholar
  6. Braun, I., Montel, J. M., Nicollet, C., 1998. Electron Microprobe Dating of Monazites from High-Grade Gneisses and Pegmatites of the Kerala Khondalite Belt, Southern India. Chemical Geology, 146(1/2): 65–85.  https://doi.org/10.1016/s0009-2541(98)00005-9 CrossRefGoogle Scholar
  7. Carpenter, P. K., 2008. EPMA Standards: The Good, the Bad, and the Ugly. Microscopy and Microanalysis, 14(S2): 530–531.  https://doi.org/10.1017/s1431927608088740 CrossRefGoogle Scholar
  8. Cherniak, D. J., Pyle, J. M., 2008. Th Diffusion in Monazite. Chemical Geology, 256(1/2): 52–61.  https://doi.org/10.1016/j.chemgeo.2008.07.024 CrossRefGoogle Scholar
  9. Cherniak, D. J., Watson, E. B., Grove, M., et al., 2004. Pb Diffusion in Monazite: A Combined RBS/SIMS Study. Geochimica et Cosmochimica Acta, 68(4): 829–840.  https://doi.org/10.1016/j.gca.2003.07.012 CrossRefGoogle Scholar
  10. Cocherie, A., Albarede, F., 2001. An Improved U-Th-Pb Age Calculation for Electron Microprobe Dating of Monazite. Geochimica et Cosmochimica Acta, 65(24): 4509–4522.  https://doi.org/10.1016/s0016-7037(01)00753-0 CrossRefGoogle Scholar
  11. Copeland, P., Parrish, R. R., Harrison, T. M., 1988. Identification of Inherited Radiogenic Pb in Monazite and Its Implications for U-Pb Systematics. Nature, 333(6175): 760–763.  https://doi.org/10.1038/333760a0 CrossRefGoogle Scholar
  12. Corfu, F., 1988. Differential Response of U-Pb Systems in Coexisting Accessory Minerals, Winnipeg River Subprovince, Canadian Shield: Implications for Archean Crustal Growth and Stabilization. Contributions to Mineralogy and Petrology, 98(3): 312–325.  https://doi.org/10.1007/bf00375182 CrossRefGoogle Scholar
  13. Deng, H., Kusky, T. M., Polat, A., et al., 2013. Geochemistry of Neoarchean Mafic Volcanic Rocks and Late Mafic Dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting. Lithos, 175–176: 193–212.  https://doi.org/10.1016/j.lithos.2013.05.007 CrossRefGoogle Scholar
  14. Dutch, R. A., 2009. Monazite Chemical Dating via Electron-Probe Micro-Analysis. MESA Journal, 53: 34–40Google Scholar
  15. Engi, M., Janots, E., Rubatto, D., et al., 2017. Rates of Metamorphism in Collisional Orogeny. Geochmica et Cosmochimica Acta, 72(72): A244.  https://doi.org/10.1016/j.gca.2008.04.001 Google Scholar
  16. Faure, M., 2005. Electron-Microprobe Dating as a Tool for Determining the Closure of Th-U-Pb Systems in Migmatitic Monazites. American Mineralogist, 90(4): 607–618.  https://doi.org/10.2138/am.2005.1303 CrossRefGoogle Scholar
  17. Faure, M., Cocherie, A., Gache, J., et al., 2014. Middle Carboniferous Intracontinental Subduction in the Outer Zone of the Variscan Belt (Montagne Noire Axial Zone, French Massif Central): Multimethod Geochronological Approach of Polyphase Metamorphism. Geological Society, London, Special Publications, 405(1): 289–311.  https://doi.org/10.1144/sp405.2 CrossRefGoogle Scholar
  18. Geisler, T., Schleicher, H., 2000. Improved U-Th-total Pb Dating of Zircons by Electron Microprobe Using a Simple New Background Modeling Procedure and Ca as a Chemical Criterion of Fluid-Induced U-Th-Pb Discordance in Zircon. Chemical Geology, 163(1/2/3/4): 269–285.  https://doi.org/10.1016/s0009-2541(99)00099-6 CrossRefGoogle Scholar
  19. Goldstein, J. I., Williams, D. B., Cliff, G., 1986. Quantitative X-Ray Analysis.  https://doi.org/10.1007/978-1-4899-2037-9_5 CrossRefGoogle Scholar
  20. Jercinovic, M. J., 2005. Analytical Perils (and Progress) in Electron Microprobe Trace Element Analysis Applied to Geochronology: Background Acquisition, Interferences, and Beam Irradiation Effects. American Mineralogist, 90(4): 526–546.  https://doi.org/10.2138/am.2005.1422 CrossRefGoogle Scholar
  21. Jercinovic, M. J., Williams, M. L., Lane, E. D., 2008. In-situ Trace Element Analysis of Monazite and Other Fine-Grained Accessory Minerals by EPMA. Chemical Geology, 254(3/4): 197–215.  https://doi.org/10.1016/j.chemgeo.2008.05.016 CrossRefGoogle Scholar
  22. Jiao, H. S., Li, X. T., 2011. Scanning Electron Microscope Energy Dispersive Spectrometer and Wave Dispersive Spectrometer Analysis Technology. Northeast Normal University Press, Changchun (in Chinese)Google Scholar
  23. Konečný, P., Kusiak, M. A., Dunkley, D. J., 2018. Improving U-Th-Pb Electron Microprobe Dating Using Monazite Age References. Chemical Geology, 484: 22–35.  https://doi.org/10.1016/j.chemgeo.2018.02.014 CrossRefGoogle Scholar
  24. Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162: 387–432.  https://doi.org/10.1016/j.earscirev.2016.09.002 CrossRefGoogle Scholar
  25. Lee, J. K. W., Williams, I. S., Ellis, D. J., 1997. Pb, U and Th Diffusion in Natural Zircon. Nature, 390(6656): 159–162.  https://doi.org/10.1038/36554 CrossRefGoogle Scholar
  26. Liu, S. W., Liu, C. H., Li, Q. G., et al., 2007. EPMA Th-U-Pb Monazite Dating of Zhongtiao and Luliang Precambrian Metamorphic Complexes. Earth Science Frontiers, 14(1): 64–74.  https://doi.org/10.1016/s1872-5791(07)60003-7 CrossRefGoogle Scholar
  27. Liu, S. W., Shu, G. M., Pan, Y. M., et al., 2004. Electron Probe Monazite Dating and the Metamorphic AGE of Wutai Group. Geological Journal of China Universities, 10(3): 356–363 (in Chinese with English Abstract)Google Scholar
  28. Liu, S. W., Zhao, G. C., Wilde, S. A., et al., 2006. Th-U-Pb Monazite Geochronology of the Luliang and Wutai Complexes: Constraints on the Tectonothermal Evolution of the Trans-North China Orogen. Precambrian Research, 148(3/4): 205–224.  https://doi.org/10.1016/j.precamres.2006.04.003 CrossRefGoogle Scholar
  29. Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In-Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43.  https://doi.org/10.1016/j.chemgeo.2008.08.004 CrossRefGoogle Scholar
  30. Ludwig, K., 2000. Users Manual for Isoplot/Ex: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Spec Publ. 1a. 53Google Scholar
  31. Montel, J. M., Foret, S., Veschambre, M., et al., 1996. Electron Microprobe Dating of Monazite. Chemical Geology, 131(1/2/3/4): 37–53.  https://doi.org/10.1016/0009-2541(96)00024-1CrossRefGoogle Scholar
  32. Montel, J. M., Kato, T., Enami, M., et al., 2018. Electron-Microprobe Dating of Monazite: The Story. Chemical Geology, 484: 4–15.  https://doi.org/10.1016/j.chemgeo.2017.11.001 CrossRefGoogle Scholar
  33. Montel, J.-M., Kornprobst, J., Vielzeuf, D., 2001. Preservation of Old U-Th-Pb Ages in Shielded Monazite: Example from the Beni Bousera Hercynian Kinzigites (Morocco). Journal of Metamorphic Geology, 18(3): 335–342.  https://doi.org/10.1046/j.1525-1314.2000.00261.x CrossRefGoogle Scholar
  34. Parrish, R. R., 1990. U-Pb Dating of Monazite and Its Application to Geological Problems. Canadian Journal of Earth Sciences, 27(11): 1431–1450.  https://doi.org/10.1139/e90-152 CrossRefGoogle Scholar
  35. Qiao, G. B., Wu, Y. Z., 2018. Geochronology, Petrogenesis and Tectonic Significance of Quanshuigou Pluton from Southeastern West Kunlun Mountain in Xinjiang, China. Earth Science, 43(12): 4283–4299 (in Chinese with English abstract).  https://doi.org/10.3799/dqkx.2018.588 Google Scholar
  36. Qiu, K. F., Yang, L. Q., 2011. Genetic Feature of Monazite and Its U-Th-Pb dating: Critical Considerations on the Tectonic Evolution of Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2721–2732 (in Chinese with English Abstract)Google Scholar
  37. Reed, S. J. B., 2002. Optimization of Wavelength Daspersive X-Ray Spectrometry Analysis Conditions. Journal of Research of the National Institute of Standards and Technology, 107(6): 497.  https://doi.org/10.6028/jres.107.042 CrossRefGoogle Scholar
  38. Reed, S., 1995. Wavelength Dispersive Spectrometry: A Review. X-Ray Spectrometry in Electron Beam Instruments, Springer, Berlin. 221–238CrossRefGoogle Scholar
  39. Rhede, D., Wendt, I., Forster, H. J., 1996. A Three-Dimensional Method for Calculating Independent Chemical U/Pb- And Th/Pb-Ages of Accessory Minerals. Chemical Geology, 130(3/4): 247–253.  https://doi.org/10.1016/0009-2541(96)00015-0 CrossRefGoogle Scholar
  40. Scharer, U., Allegre, C. J., 1982. Uranium-Lead System in Fragments of a Single Zircon Grain. Nature, 295(5850): 585–587.  https://doi.org/10.1038/295585a0 CrossRefGoogle Scholar
  41. Smith, H. A., Giletti, B. J., 1997. Lead Diffusion in Monazite. Geochimica et Cosmochimica Acta, 61(5): 1047–1055.  https://doi.org/10.1016/s0016-7037(96)00396-1 CrossRefGoogle Scholar
  42. Steiger, R. H., Jager, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- And Cosmochronology. Earth and Planetary Science Letters, 36(3): 359–362.  https://doi.org/10.1016/0012-821x(77)90060-7 CrossRefGoogle Scholar
  43. Suzuki, K., Adachi, M., 1998. Denudation History of the High T/P Ryoke Metamorphic Belt, Southwest Japan: Constraints from CHIME Monazite Ages of Gneisses and Granitoids. Journal of Metamorphic Geology, 16(1): 23–37.  https://doi.org/10.1111/j.1525-1314.1998.00057.x CrossRefGoogle Scholar
  44. Suzuki, K., Adachi, M., Tanaka, T., 1991. Middle Precambrian Provenance of Jurassic Sandstone in the Mino Terrane, Central Japan: Th-U-Total Pb Evidence from an Electron Microprobe Monazite Study. Sedimentary Geology, 75(1/2): 141–147.  https://doi.org/10.1016/0037-0738(91)90055-i CrossRefGoogle Scholar
  45. Suzuki, K., Kato, T., 2008. CHIME Dating of Monazite, Xenotime, Zircon and Polycrase: Protocol, Pitfalls and Chemical Criterion of Possibly Discordant Age Data. Gondwana Research, 14(4): 569–586.  https://doi.org/10.1016/j.gr.2008.01.005 CrossRefGoogle Scholar
  46. Tang, A., Li, G. L., Su, Y., et al., 2017. EMPA Chemical U-Th-Pb Dating of Uraninite in Ziyunshan Granite, Centre Jiangxi Province. Earth Science, 42(3): 378–388 (in Chinese with English Abstract).  https://doi.org/10.3799/dqkx.2017.028 Google Scholar
  47. Trap, P., Faure, M., Lin, W., et al., 2009. The Zanhuang Massif, the Second and Eastern Suture Zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 172(1/2): 80–98.  https://doi.org/10.1016/j.precamres.2009.03.011 CrossRefGoogle Scholar
  48. Trap, P., Faure, M., Lin, W., et al., 2011. Syn-Collisional Channel Flow and Exhumation of Paleoproterozoic High Pressure Rocks in the Trans-North China Orogen: The Critical Role of Partial-Melting and Orogenic Bending. Gondwana Research, 20(2/3): 498–515.  https://doi.org/10.1016/j.gr.2011.02.013 CrossRefGoogle Scholar
  49. Wang, J. P., Kusky, T., Polat, A., et al., 2013. A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 608: 929–946.  https://doi.org/10.1016/j.tecto.2013.07.025 CrossRefGoogle Scholar
  50. Wang, J. P., Kusky, T., Wang, L., et al., 2017. Structural Relationships along a Neoarchean Arc-Continent Collision Zone, North China Craton. Geological Society of America Bulletin, 129(1/2): 59–75.  https://doi.org/10.1130/b31479.1 CrossRefGoogle Scholar
  51. Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin,  https://doi.org/10.1130/b35138.1 Google Scholar
  52. Williams, I. S., Compston, W., Chappell, B. W., 1983. Zircon and Monazite U-Pb Systems and the Histories of I-Type Magmas, Berridale Batholith, Australia. Journal of Petrology, 24(1): 76–97.  https://doi.org/10.1093/petrology/24.1.76 CrossRefGoogle Scholar
  53. Williams, M. L., Jercinovic, M. J., Mahan, K. H., et al., 2017. Electron Microprobe Petrochronology. Reviews in Mineralogy and Geochemistry, 83(1): 153–182.  https://doi.org/10.2138/rmg.2017.83.5 CrossRefGoogle Scholar
  54. Williams, M. L., Jercinovic, M. J., Terry, M. P., 1999. Age Mapping and Dating of Monazite on the Electron Microprobe: Deconvoluting Multistage Tectonic Histories. Geology, 27(11): 1023.  https://doi.org/10.1130/0091-7613(1999)027<1023:amadom>2.3.co;2 CrossRefGoogle Scholar
  55. Xiao, L. L., Jiang, Z. S., Wang, G. D., et al., 2011. Metamorphic Reaction Textures and Metamorphic P-T-t Loops of the Precambrian Zanhuang Metamorphic Complex, Hebei, North China. Acta Petrologica Sinica, 27(4): 980–1002 (in Chinese with English Abstract)Google Scholar
  56. Xiao, L. L., Liu, F. L., Chen, Y., 2014. Metamorphic P-T-t Paths of the Zanhuang Metamorphic Complex: Implications for the Paleoproterozoic Evolution of the Trans-North China Orogen. Precambrian Research, 255: 216–235.  https://doi.org/10.1016/j.precamres.2014.09.027 CrossRefGoogle Scholar
  57. Yao, L., 2008. Research and Application of Electron Probe Analysis Methods for Low Content and Trace Elements: [Dissertation]. Jilin University, Changchun (in Chinese)Google Scholar
  58. Yao, L., Tian, D., Lian, X. R., 2008. Progress in Background Subtraction and Spectral Interference Correction in Electron Probe Microanalysis. Rock and Mineral Analysis, 27(1): 49–54 (in Chinese with English Abstract)Google Scholar
  59. Zhang, W. L., Wang, R. C., et al., 2003. Principles and Application of Electron Probe Chemical Dating Method for Accessory Minerals. Geological Review, 49(3): 253–260 (in Chinese with English Abstract)Google Scholar
  60. Zhang, X., Yang, S. Y., Zhao, H., et al., 2019. Effect of Beam Current and Diameter on Electron Probe Microanalysis of Carbonate Minerals. Journal of Earth Science, 30(4): 834–842.  https://doi.org/10.1007/s12583-017-0939-x CrossRefGoogle Scholar
  61. Zhao, Y. L., Liu, Y. J., Li, W. M., et al., 2018. Detrital Zircon LA-ICP-MS U-Pb Age of Late Carboniferous to Early Permian Sandstones in Central Great Xing’an Range and Its Geological Significance. Earth Science, 43(6): 2055–2075 (in Chinese with English Abstract).  https://doi.org/10.3799/dqkx.2018.613 Google Scholar
  62. Zhou, J. X., 1988. Electron Probe Analysis. Geological Publishing House, Beijing. 105–120 (in Chinese)Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Geological Processes and Mineral Resources, Hubei Key Laboratory of Critical Zone Evolution, Center for Global Tectonics, School of Earth SciencesChina University of GeosciencesWuhanChina

Personalised recommendations