Advertisement

Journal of Earth Science

, Volume 30, Issue 5, pp 1041–1048 | Cite as

Soil Properties and Plant Growth Response to Litter in a Prolonged Enclosed Grassland of Loess Plateau, China

  • Yunwu XiongEmail author
  • Bing Yu
  • Mengting Bai
  • Xueyang Zhang
  • Guanhua Huang
  • Alex Furman
Paleontology, Environmental Geology and Planetary Geology

Abstract

The enclosure and ungrazing practices for grassland management result in accumulation of plant litter on soil surface thus affecting the available soil water and nutrients for plant production. We experimentally investigated the effects of litter on soil properties and plant growth in a prolonged enclosure grassland of Loess Plateau, China. Three different litter manipulations were conducted including removal of all litter, an untreated in-situ control with original litter levels, and a double litter treatment. Litter treatment experiments demonstrated that plant litter affected the superficial soil water. Soil water content in plots with in-situ or double litter is generally higher than that with litter removal. The depletion of soil water up to five days post rainfall is fastest in litter removal plots for the top soil, but no evident difference for the deep ones. Different litter treatments have no significant impact on soil total carbon, nitrogen as well as carbon/nitrogen ratio for consecutive two years experiments. Both above- and below-ground biomasses in plots of litter removal were less than those in the plots of in-situ and double litter treatment. Litter affects plant production mainly through the mechanical barrier regulating root zone soil moisture. Therefore, prolonged litter manipulation experiments are desirable to understand the long-term response of plant growth on litter from nutrient aspect.

Key words

soil moisture ungrazed grassland Stripa bungeana litter manipulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was partially supported by the National Natural Science Foundation of China (No. 41201037) and the Fundamental Research Funds for the Central Universities (No. 2014XJ024). The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1017-3.

References Cited

  1. Baer, S. G., Blair, J. M., 2008. Grassland Establishment under Varying Resource Availability: A Test of Positive and Negative Feedback. Ecology, 89(7): 1859–1871.  https://doi.org/10.1890/07-0417.1 CrossRefGoogle Scholar
  2. Ball, B. A., Carrillo, Y., Molina, M., 2014. The Influence of Litter Composition Across the Litter-Soil Interface on Mass Loss, Nitrogen Dynamics and the Decomposer Community. Soil Biology and Biochemistry, 69: 71–82.  https://doi.org/10.1016/j.soilbio.2013.10.048 CrossRefGoogle Scholar
  3. Bansal, S., Sheley, R. L., Blank, B., et al., 2014. Plant Litter Effects on Soil Nutrient Availability and Vegetation Dynamics: Changes that Occur When Annual Grasses Invade Shrub-Steppe Communities. Plant Ecology, 215(3): 367–378.  https://doi.org/10.1007/s11258-014-0307-1 CrossRefGoogle Scholar
  4. Boeken, B., Orenstein, D., 2001. The Effect of Plant Litter on Ecosystem Properties in a Mediterranean Semi-Arid Shrubland. Journal of Vegetation Science, 12(6): 825–832.  https://doi.org/10.2307/3236870 CrossRefGoogle Scholar
  5. Borgen, S. K., Molstad, L., Bruun, S., et al., 2011. Estimation of Plant Litter Pools and Decomposition-Related Parameters in a Mechanistic Model. Plant and Soil, 338(1/2): 205–222.  https://doi.org/10.1007/s11104-010-0404-4 CrossRefGoogle Scholar
  6. Carrera, A. L., Bertiller, M. B., 2010. Relationships among Plant Litter, Fine Roots, and Soil Organic C and N Across an Aridity Gradient in Northern Patagonia, Argentina. Écoscience, 17(3): 276–286.  https://doi.org/10.2980/17-3-3359 CrossRefGoogle Scholar
  7. Carrillo, Y., Ball, B. A., Strickland, M. S., et al., 2012. Legacies of Plant Litter on Carbon and Nitrogen Dynamics and the Role of the Soil Community. Pedobiologia, 55(4): 185–192.  https://doi.org/10.1016/j.pedobi.2012.02.002 CrossRefGoogle Scholar
  8. Chang, X. F., Chai, Q. L., Wu, G. L., et al., 2017. Soil Organic Carbon Accumulation in Abandoned Croplands on the Loess Plateau. Land Degradation & Development, 28(5): 1519–1527.  https://doi.org/10.1002/ldr.2679 CrossRefGoogle Scholar
  9. Chen, Y. P., Wang, K. B., Lin, Y. S., et al., 2015. Balancing Green and Grain Trade. Nature Geoscience, 8(10): 739–741.  https://doi.org/10.1038/ngeo2544 CrossRefGoogle Scholar
  10. Deutsch, E. S., Bork, E. W., Willms, W. D., 2010. Soil Moisture and Plant Growth Responses to Litter and Defoliation Impacts in Parkland Grasslands. Agriculture, Ecosystems & Environment, 135(1/2): 1–9.  https://doi.org/10.1016/j.agee.2009.08.002 CrossRefGoogle Scholar
  11. Dormaar, J. F., Adams, B. W., Willms, W. D., 1997. Impacts of Rotational Grazing on Mixed Prairie Soils and Vegetation. Journal of Range Management, 50(6): 647–651.  https://doi.org/10.2307/4003461 CrossRefGoogle Scholar
  12. Facelli, J. M., Pickett, S. T. A., 1991a. Plant Litter: Its Dynamics and Effects on Plant Community Structure. The Botanical Review, 57(1): 1–32.  https://doi.org/10.1007/bf02858763 CrossRefGoogle Scholar
  13. Facelli, J. M., Pickett, S. T. A., 1991b. Plant Litter: Light Interception and Effects on an Old-Field Plant Community. Ecology, 72(3): 1024–1031.  https://doi.org/10.2307/1940602 CrossRefGoogle Scholar
  14. Freschet, G. T., Cornwell, W. K., Wardle, D. A., et al., 2013. Linking Litter Decomposition of Above- and Below-Ground Organs to Plant-Soil Feedbacks Worldwide. Journal of Ecology, 101(4): 943–952.  https://doi.org/10.1111/1365-2745.12092 CrossRefGoogle Scholar
  15. Fu, B. J., Liu, Y., Lü, Y. H., et al., 2011. Assessing the Soil Erosion Control Service of Ecosystems Change in the Loess Plateau of China. Ecological Complexity, 8(4): 284–293.  https://doi.org/10.1016/j.ecocom.2011.07.003 CrossRefGoogle Scholar
  16. Gao, Y., Cheng, J. M., 2013. Spatial and Temporal Variations of Grassland Soil Organic Carbon and Total Nitrogen Following Grazing Exclusion in Semiarid Loess Plateau, Northwest China. Acta Agriculturae Scandinavica, Section B: Soil & Plant Science, 63(8): 704–711.  https://doi.org/10.1080/09064710.2013.854828 CrossRefGoogle Scholar
  17. Guretzky, J. A., Schacht, W. H., Wingeyer, A., et al., 2014. Litter Deposition and Nitrogen Return in Rotationally Stocked Smooth Bromegrass Pastures. Agronomy Journal, 106(1): 175–184.  https://doi.org/10.2134/agronj2013.0282 CrossRefGoogle Scholar
  18. Horton, R., Kluitenberg, G., Vristow, K., et al., 1994. Surface Crop Residue Effects on the Soil Surface Energy Balance. Managing Agricultural Residues, 1: 143–162Google Scholar
  19. Knapp, A. K., Seastedt, T. R., 1986. Detritus Accumulation Limits Productivity of Tallgrass Prairie. BioScience, 36(10): 662–668.  https://doi.org/10.2307/1310387 CrossRefGoogle Scholar
  20. Leff, J. W., Wieder, W. R., Taylor, P. G., et al., 2012. Experimental Litterfall Manipulation Drives Large and Rapid Changes in Soil Carbon Cycling in a Wet Tropical Forest. Global Change Biology, 18(9): 2969–2979.  https://doi.org/10.1111/j.1365-2486.2012.02749.x CrossRefGoogle Scholar
  21. Li, J. P., Zheng, Z. R., Xie, H. T., et al., 2017. Increased Soil Nutrition and Decreased Light Intensity Drive Species Loss after Eight Years Grassland Enclosures. Scientific Reports, 7(1): 44525.  https://doi.org/10.1038/srep44525 CrossRefGoogle Scholar
  22. Liu, W. G., Wei, J., Cheng, J. M., et al., 2014. Profile Distribution of Soil Inorganic Carbon along a Chronosequence of Grassland Restoration on a 22-Year Scale in the Chinese Loess Plateau. Catena, 121: 321–329.  https://doi.org/10.1016/j.catena.2014.05.019 CrossRefGoogle Scholar
  23. Naeth, M. A., Bailey, A. W., Chanasyk, D. S., et al., 1991. Water Holding Capacity of Litter and Soil Organic Matter in Mixed Prairie and Fescue Grassland Ecosystems of Alberta. Journal of Range Management, 44(1): 13–17.  https://doi.org/10.2307/4002630 CrossRefGoogle Scholar
  24. Qiu, L. P., Wei, X. R., Zhang, X. C., et al., 2012. Soil Organic Carbon Losses Due to Land Use Change in a Semiarid Grassland. Plant and Soil, 355(1/2): 299–309.  https://doi.org/10.1007/s11104-011-1099-x CrossRefGoogle Scholar
  25. Sakaguchi, K., Zeng, X. B., 2009. Effects of Soil Wetness, Plant Litter, and Under-Canopy Atmospheric Stability on Ground Evaporation in the Community Land Model (CLM3.5). Journal of Geophysical Research: Atmospheres, 114(D1): 010834.  https://doi.org/10.1029/2008jd010834 CrossRefGoogle Scholar
  26. Sayer, E. J., 2006. Using Experimental Manipulation to Assess the Roles of Leaf Litter in the Functioning of Forest Ecosystems. Biological Reviews, 81(1): 1–31.  https://doi.org/10.1017/s1464793105006846 CrossRefGoogle Scholar
  27. Villalobos-Vega, R., Goldstein, G., Haridasan, M., et al., 2011. Leaf Litter Manipulations Alter Soil Physicochemical Properties and Tree Growth in a Neotropical Savanna. Plant and Soil, 346(1/2): 385–397.  https://doi.org/10.1007/s11104-011-0860-5 CrossRefGoogle Scholar
  28. Wang, J., Zhao, M. L., Willms, W. D., et al., 2011. Can Plant Litter Affect Net Primary Production of a Typical Steppe in Inner Mongolia?. Journal of Vegetation Science, 22(2): 367–376.  https://doi.org/10.1111/j.1654-1103.2011.01257.x CrossRefGoogle Scholar
  29. Weber, K. T., Gokhale, B. S., 2011. Effect of Grazing on Soil-Water Content in Semiarid Rangelands of Southeast Idaho. Journal of Arid Environments, 75(5): 464–470.  https://doi.org/10.1016/jjaridenv.2010.12.009 CrossRefGoogle Scholar
  30. Wei, J., Liu, W. G., Cheng, J. M., et al., 2011. Dynamics of Soil Organic Carbon Storage Following Restoration of Grassland on Yunwu Mountain. Acta Ecologica Sinica, 31(5): 271–275.  https://doi.org/10.1016/j.chnaes.2011.06.009 CrossRefGoogle Scholar
  31. Wickings, K., Grandy, A. S., Reed, S. C., et al., 2012. The Origin of Litter Chemical Complexity during Decomposition. Ecology Letters, 15(10): 1180–1188.  https://doi.org/10.1111/j.1461-0248.2012.01837.x CrossRefGoogle Scholar
  32. Willms, W. D., McGinn, S. M., Dormaar, J. F., 1993. Influence of Litter on Herbage Production in the Mixed Prairie. Journal of Range Management, 46(4): 320–324.  https://doi.org/10.2307/4002466 CrossRefGoogle Scholar
  33. Xiong, S. J., Nilsson, C., 1999. The Effects of Plant Litter on Vegetation: A Meta-Analysis. Journal of Ecology, 87(6): 984–994.  https://doi.org/10.1046/j.1365-2745.1999.00414.x CrossRefGoogle Scholar
  34. Xu, S., Liu, L. L., Sayer, E. J., 2013. Variability of Above-Ground Litter Inputs Alters Soil Physicochemical and Biological Processes: A Meta-Analysis of Litterfall-Manipulation Experiments. Biogeosciences, 10(11): 7423–7433.  https://doi.org/10.5194/bg-10-7423-2013 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Water Resources & Civil EngineeringChina Agricultural UniversityBeijingChina
  2. 2.Chinese-Israeli International Center for Research and Training in AgricultureChina Agricultural UniversityBeijingChina
  3. 3.Civil and Environmental EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations