Advertisement

Journal of Earth Science

, Volume 30, Issue 5, pp 996–1004 | Cite as

Late Triassic-Cenozoic Thermochronology in the Southern Sanjiang Tethys, SW China, New Insights from Zircon Fission Track Analysis

  • Li Yang
  • Wanming YuanEmail author
  • Xiaoyong Zhu
  • Zhen Shi
Structural Geology and Thermochronology

Abstract

The Sanjiang Tethys orogenic belt is located in the southeast side of the Qinghai-Tibet Plateau. It has undergone the opening and closing movements in different periods of Tethys oceans, complex accretive orogeny and strong mineralization from Paleozoic to Mesozoic. Using zircon fission track (ZFT) thermochronology, this study reveals the Sanjiang Tethys has experienced multi-stage tectonic activities during the Late Triassic-Cenozoic. The 15 ZFT ages with their decomposition components obtained from Sanjiang Tethysian region range from 212 to 19 Ma, which not only shows 6 age groups of 212, 179–172, 156–133, 121–96, 84–70 and 50–19 Ma, but also constrains the age limit of the tectonothermal events. These age groups recorded the Paleo-Tethys main and branches ocean opening/closure time. The age-elevation plot indicates the Sanjiang region had differential uplifting and exhumation and fast uplifting times of ca. 133, 116 and 80 Ma, coinciding with the age groups mentioned above. These results show new geochronological evidences and viewpoints.

Key words

tectonic events zircon fission track analysis tethys evolution Sanjiang region Qinghai-Tibet Plateau thermochronology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was jointly supported by the National Program on Key Basic Research Project (973 Program) (No. 2015CB452606) and the National Natural Science Foundation of China (Nos. 41730427, 41172088). The authors thank Profs. Chuanbo Shen (China University of Geosciences, Wuhan), Ruxin Ding (Sun Yat-Sen University) and Li Li (China University of Petroleum) for discussion and good suggestions. We express our sincere thanks to anonymous reviewers who are greatly appreciated for improving the manuscript. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1014-6.

References Cited

  1. An, F. Y., Lai, Z. P., Liu, X. J., et al., 2018. Luminescence Chronology and Radiocarbon Reservoir Age Determination of Lacustrine Sediments from the Heihai Lake, NE Qinghai-Tibetan Plateau and Its Paleoclimate Implications. Journal of Earth Science, 29(3): 695–706.  https://doi.org/10.1007/s12583-017-0972-9 Google Scholar
  2. Arne, D., Worley, B., Wilson, C., et al., 1997. Differential Exhumation in Response to Episodic Thrusting along the Eastern Margin of the Tibetan Plateau. Tectonophysics, 280(3/4): 239–256.  https://doi.org/10.1016/s0040-1951(97)00040-1 Google Scholar
  3. Ba, J., Zhang, L., He, C., et al., 2018. Zircon and Monazite Ages Constraints on Devonian Magmatism and Granulite-Facies Metamorphism in the Southern Qaidam Block: Implications for Evolution of Proto- and Paleo-Tethys in East Asia. Journal of Earth Science, 29(5): 1132–1150.  https://doi.org/10.1007/s12583-018-0853-x Google Scholar
  4. Botor, D., Anczkiewicz, A. A., Dunkl, I., et al., 2018. Tectonothermal History of the Holy Cross Mountains (Poland) in the Light of Low-Temperature Thermochronology. Terra Nova, 30(4): 270–278.  https://doi.org/10.1111/ter.12336 Google Scholar
  5. Brandon, M. T., 1996. Probability Density Plot for Fission-Track Grain-Age Samples. Radiation Measurements, 26(5): 663–676.  https://doi.org/10.1016/s1350-4487(97)82880-6 Google Scholar
  6. Braun, J., 2016. Strong Imprint of Past Orogenic Events on the Thermochronological Record. Tectonophysics, 683: 325–332.  https://doi.org/10.1016/j.tecto.2016.05.046 Google Scholar
  7. Chen, G., Li, S. H., Zhang, H. R., et al., 2013. Fluid Inclusion Analysis for Constraining the Hydrocarbon Accumulation Periods of the Permian Reservoirs in Northeast Ordos Basin. Journal of Earth Science, 24(4): 589–598.  https://doi.org/10.1007/s12583-013-0354-x Google Scholar
  8. Chen, J. L., Xu, J. F., Ren, J. B., et al., 2017. Late Triassic E-MORB-Like Basalts Associated with Porphyry Cu-Deposits in the Southern Yidun Continental Arc, Eastern Tibet: Evidence of Slab-Tear during Subduction?. Ore Geology Reviews, 90: 1054–1062.  https://doi.org/10.1016/j.oregeorev.2016.12.006 Google Scholar
  9. Chen, Y., Zhu, D. C., Zhao, Z. D., et al., 2014. Slab Breakoff Triggered ca. 113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449–463.  https://doi.org/10.1016/j.gr.2013.06.005 Google Scholar
  10. Cheng, F., Garzione, C., Jolivet, M., et al., 2019. Provenance Analysis of the Yumen Basin and Northern Qilian Shan: Implications for the Pre-Collisional Paleogeography in the NE Tibetan Plateau and Eastern Termination of Altyn Tagh Fault. Gondwana Research, 65: 156–171.  https://doi.org/10.1016/j.gr.2018.08.009 Google Scholar
  11. Deng, B., Liu, S. G., Li, Z. W., et al., 2013. Differential Exhumation at Eastern Margin of the Tibetan Plateau, from Apatite Fission-Track Thermochronology. Tectonophysics, 591: 98–115.  https://doi.org/10.1016/j.tecto.2012.11.012 Google Scholar
  12. Deng, J., Wang, C. M., Santosh, M., 2014. Orogenesis and Metallogenesis in the Sanjiang Tethyan Domain, China: Preface. Gondwana Research, 26(2): 415–418.  https://doi.org/10.1016/j.gr.2013.12.003 Google Scholar
  13. Deng, J., Wang, C. M., Zi, J. W., et al., 2018. Constraining Subduction-Collision Processes of the Paleo-Tethys along the Changning-Menglian Suture: New Zircon U-Pb Ages and Sr-Nd-Pb-Hf-O Isotopes of the Lincang Batholith. Gondwana Research, 62: 75–92.  https://doi.org/10.1016/j.gr.2017.10.008 Google Scholar
  14. Galbraith, R. F., 1981. On Statistical Models for Fission Track Counts: Reply. Journal of the International Association for Mathematical Geology, 13(6): 485–488.  https://doi.org/10.1007/bf01034500 Google Scholar
  15. Ge, X., Shen, C. B., Yang, Z., et al., 2013. Low-Temperature Thermochronology Constraints on the Mesozoic-Cenozoic Exhumation of the Huangling Massif in the Middle Yangtze Block, Central China. Journal of Earth Science, 24(4): 541–552.  https://doi.org/10.1007/s12583-013-0348-8 Google Scholar
  16. Green, P. F., Duddy, I. R., Gleadow, A. J. W., et al., 1986. Thermal Annealing of Fission Tracks in Apatite: I. A Qualitative Description. Chemical Geology: Isotope Geoscience section, 59: 237–253.  https://doi.org/10.1016/0168-9622(86)90074-6 Google Scholar
  17. He, P. J., Wang, X. X., Song, C. H., et al., 2017. Cenozoic Evolution of the Western Qinling Mt. Range Based on Thermochronologic and Sedimentary Records from the Wudu Basin, NE Tibetan Plateau. Journal of Asian Earth Sciences, 138: 484–494.  https://doi.org/10.1016/j.jseaes.2017.02.033 Google Scholar
  18. He, W. Y., Yang, L. Q., Lu, Y. J., et al., 2018. Zircon U-Pb Dating, Geochemistry and Sr-Nd-Hf-O Isotopes for the Baimaxueshan Granodiorites and Mafic Microgranulars Enclaves in the Sanjiang Orogen: Evidence for Westward Subduction of Paleo-Tethys. Gondwana Research, 62: 112–126.  https://doi.org/10.1016/j.gr.2018.03.011 Google Scholar
  19. Hou, Z. Q., Mo, X. X., Tan, J., et al., 1993. The Eruption Sequences of Basalts in the Yidun Island-Arc, Sanjiang Region and Evolution of Rift to Island-Arc. Acta Geosicientia Sinica, 1: 4Google Scholar
  20. Hou, Z. Q., Yang, Z. S., Xu, W. Y., et al., 2006. Metallogenesis in Tibetan Collisional Orogenic Belt: I. Mineralization in Main Collisional Orogenic Setting. Mineral Deposits, 25(4): 337–358 (in Chinese with English Abstract)Google Scholar
  21. Hurford, A. J., 1990. Standardization of Fission Track Dating Calibration: Recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology. Chemical Geology: Isotope Geoscience Section, 80(2): 171–178.  https://doi.org/10.1016/0168-9622(90)90025-8 Google Scholar
  22. Hurford, A. J., Green, P. F., 1983. The Zeta Age Calibration of Fission-Track Dating. Chemical Geology, 41: 285–317.  https://doi.org/10.1016/s0009-2541(83)80026-6 Google Scholar
  23. Ji, J. L., Zhang, K. X., Clift, P. D., et al., 2017. High-Resolution Magnetostratigraphic Study of the Paleogene-Neogene Strata in the Northern Qaidam Basin: Implications for the Growth of the Northeastern Tibetan Plateau. Gondwana Research, 46: 141–155.  https://doi.org/10.1016/j.gr.2017.02.015 Google Scholar
  24. Jing, L. Z., Zhang, J. Y., McPhillips, D., et al., 2018. Multiple Episodes of Fast Exhumation since Cretaceous in Southeast Tibet, Revealed by Low-Temperature Thermochronology. Earth and Planetary Science Letters, 490: 62–76.  https://doi.org/10.1016/j.epsl.2018.03.011 Google Scholar
  25. Kong, L. Y., Yao, H. Z., Xu, Y. D., et al., 2014. Evolution of Sedimentary Basins in Qiangtang-Sanjiang from Paleozoic to Mesozoic. Earth Science: Journal of China University of Geosciences, 39(8): 1217–1229.  https://doi.org/10.3799/dqkx.2014.105 (in Chinese with English Abstract)Google Scholar
  26. Li, L., Zhong, D. L., Shi, X. P., et al., 2009. Late Mesozoic-Cenozoic Décollement Structure and Its Deep Geological Background in Western Shandong, China. Progress in Natural Science, 19(5): 603–613.  https://doi.org/10.1016/j.pnsc.2008.08.006 Google Scholar
  27. Li, S. M., Zhu, D. C., Wang, Q., et al., 2014. Northward Subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic Intrusive Rocks from Bangong Tso in Western Tibet. Lithos, 205: 284–297.  https://doi.org/10.1016/j.lithos.2014.07.010 Google Scholar
  28. Li, Y. L., He, J., Wang, C. S., et al., 2013. Late Cretaceous K-Rich Magmatism in Central Tibet: Evidence for Early Elevation of the Tibetan Plateau?. Lithos, 160/161: 1–13.  https://doi.org/10.1016/j.lithos.2012.11.019 Google Scholar
  29. Liu, D. L., Shi, R. D., Ding, L., et al., 2017. Zircon U-Pb Age and Hf Isotopic Compositions of Mesozoic Granitoids in Southern Qiangtang, Tibet: Implications for the Subduction of the Bangong-Nujiang Tethyan Ocean. Gondwana Research, 41: 157–172.  https://doi.org/10.1016/j.gr.2015.04.007 Google Scholar
  30. Lü, B. X., Wang, Z., Zhang, N. D., et al., 1993. Granitoids in the Sanjiang Region (Nujing-Lancangjiang-Jinshajiang Region) and Their Metallogenetic Specialization. Geological Publishing House, Beijing. 1–238 (in Chinese)Google Scholar
  31. Meng, X. Y., Mao, J. W., Zhang, C. Q., et al., 2016. The Timing, Origin and T-F O2 Crystallization Conditions of Long-Lived Magmatism at the Yangla Copper Deposit, Sanjiang Tethyan Orogenic Belt: Implications for Post-Collisional Magmatic-Hydrothermal Ore Formation. Gondwana Research, 40: 211–229.  https://doi.org/10.1016/j.gr.2016.09.005 Google Scholar
  32. Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1–33.  https://doi.org/10.1016/j.jseaes.2012.12.020 Google Scholar
  33. Mo, X. X., Deng, J. F., Lu, F. X., 1994. Volcanism and the Evolution of Tethys in Sanjiang Area, Southwestern China. Journal of Southeast Asian Earth Sciences, 9(4): 325–333.  https://doi.org/10.1016/0743-9547(94)90043-4 Google Scholar
  34. Oukassou, M., Saddiqi, O., Barbarand, J., et al., 2012. Post-Variscan Exhumation of the Central Anti-Atlas (Morocco) Constrained by Zircon and Apatite Fission-Track Thermochronology. Terra Nova, 25(2): 151–159.  https://doi.org/10.1111/ter.12019 Google Scholar
  35. Peng, Z. M., Zhang, J., Guan, J, L., et al., 2018. The Discovery of Early-Middle Ordovician Granitic Gneiss from the Giant Lincang Batholith in Sanjiang Area of Western Yunnan and Its Geological Implications. Earth Science: Journal of China University of Geosciences, 43(8): 2571–2585.  https://doi.org/10.3799/dqkx.2018.102 (in Chinese with English Abstract)Google Scholar
  36. Piedrahita, V. A., Bernet, M., Chadima, M., et al., 2017. Detrital Zircon Fission-Track Thermochronology and Magnetic Fabric of the Amagá Formation (Colombia): Intracontinental Deformation and Exhumation Events in the Northwestern Andes. Sedimentary Geology, 356: 26–42.  https://doi.org/10.1016/j.sedgeo.2017.05.003 Google Scholar
  37. Qu, X. M., Hou, Z. Q., Zhou, S. G., 2002. Geochemical and Nd, Sr Isotopic Study of the Post-Orogenic Granites in the Yidun Arc Belt of Northern Sanjiang Region, Southwestern China. Resource Geology, 52(2): 163–172.  https://doi.org/10.1111/j.1751-3928.2002.tb00128.x Google Scholar
  38. Ruiz, G., Seward, D., 2006. The Punjab Foreland Basin of Pakistan: A Reinterpretation of Zircon Fission-Track Data in the Light of Miocene Hinterland Dynamics. Terra Nova, 18(4): 248–256.  https://doi.org/10.1111/j.1365-3121.2006.00686.x Google Scholar
  39. Shen, C. B., Hu, D., Shao, C., et al., 2016. Thermochronology Quantifying Exhumation History of the Wudang Complex in the South Qinling Orogenic Belt, Central China. Geological Magazine, 155(4): 893–906.  https://doi.org/10.1017/s0016756816001047 Google Scholar
  40. Shen, C. B., Mei, L. F., Peng, L., et al., 2012. LA-ICPMS U-Pb Zircon Age Constraints on the Provenance of Cretaceous Sediments in the Yichang Area of the Jianghan Basin, Central China. Cretaceous Research, 34(3): 172–183.  https://doi.org/10.1016/j.cretres.2011.10.016 Google Scholar
  41. Shi, G. H., Jiang, N., Liu, Y., et al., 2009. Zircon Hf Isotope Signature of the Depleted Mantle in the Myanmar Jadeitite: Implications for Mesozoic Intra-Oceanic Subduction between the Eastern Indian Plate and the Burmese Platelet. Lithos, 112(3/4): 342–350.  https://doi.org/10.1016/j.lithos.2009.03.011 Google Scholar
  42. Song, Y., Ren, J. Y., Liu, K. Y., et al., 2018. Post-Rift Anomalous Thermal Flux in the Songliao Basin, NE China, as Revealed from Fission Track Thermochronology and Tectonic Analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 508: 148–165.  https://doi.org/10.1016/j.palaeo.2018.07.030 Google Scholar
  43. Spiegel, C., Kuhlemann, J., Dunkl, I., et al., 2000. The Erosion History of the Central Alps: Evidence from Zircon Fission Track Data of the Foreland Basin Sediments. Terra Nova, 12(4): 163–170.  https://doi.org/10.1046/j.1365-3121.2000.00289.x Google Scholar
  44. Sun, L. X., Bai, Z. D., Xun, D. B., et al., 2011. Geological Characteristics and Zircon U-Pb SHRIMP Dating of the Plagiogranite in Amduoophiolites, Tibet. Geological Survey and Research, 34: 10–15Google Scholar
  45. Tang, Y., Zhai, Q. G., Hu, P. Y., et al., 2018. Petrology, Geochemistry and Geochronology of the Zhongcang Ophiolite, Northern Tibet: Implications for the Evolution of the Bangong-Nujiang Ocean. Geoscience Frontiers, 9(5): 1369–1381.  https://doi.org/10.1016/j.gsf.2018.05.007 Google Scholar
  46. Vermeesch, P., 2009. RadialPlotter: A Java Application for Fission Track, Luminescence and other Radial Plots. Radiation Measurements, 44(4): 409–410.  https://doi.org/10.1016/j.radmeas.2009.05.003 Google Scholar
  47. Wang, A., Wang, G., Xie, D., et al., 2006. Fission Track Geochronology of Xiaonanchuan Pluton and the Morphotectonic Evolution of Eastern Kunlun since Late Miocene. Journal of China University of Geosciences, 17(4): 302–309.  https://doi.org/10.1016/s1002-0705(07)60003-x Google Scholar
  48. Wang, B. D., Wang, L. Q., Chung, S. L., et al., 2016. Evolution of the Bangong-Nujiang Tethyan Ocean: Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites. Lithos, 245: 18–33.  https://doi.org/10.1016/j.lithos.2015.07.016 Google Scholar
  49. Wang, C. M., Deng, J., Santosh, M., et al., 2015. Age and Origin of the Bulangshan and Mengsong Granitoids and Their Significance for Post-Collisional Tectonics in the Changning-Menglian Paleo-Tethys Orogen. Journal of Asian Earth Sciences, 113: 656–676.  https://doi.org/10.1016/j.jseaes.2015.05.001 Google Scholar
  50. Wang, Y. D., Zheng, J. J., Zheng, Y. W., 2018. Mesozoic-Cenozoic Exhumation History of the Qimen Tagh Range, Northeastern Margins of the Tibetan Plateau: Evidence from Apatite Fission Track Analysis. Gondwana Research, 58: 16–26.  https://doi.org/10.1016/j.gr.2018.01.014 Google Scholar
  51. Wang, Y. Z., Zheng, D. W., Pang, J. Z., et al., 2018. Using Slope-Area and Apatite Fission Track Analysis to Decipher the Rock Uplift Pattern of the Yumu Shan: New Insights into the Growth of the NE Tibetan Plateau. Geomorphology, 308: 118–128.  https://doi.org/10.1016/j.geomorph.2018.02.006 Google Scholar
  52. Wu, T., Xiao, L., Wilde, S. A., et al., 2016. Zircon U-Pb Age and Sr-Nd-Hf Isotope Geochemistry of the Ganluogou Dioritic Complex in the Northern Triassic Yidun Arc Belt, Eastern Tibetan Plateau: Implications for the Closure of the Garzê-Litang Ocean. Lithos, 248–251: 94–108.  https://doi.org/10.1016/j.lithos.2015.12.029 Google Scholar
  53. Xu, Y. G., Yang, Q. J., Lan, J. B., et al., 2012. Temporal-Spatial Distribution and Tectonic Implications of the Batholiths in the Gaoligong-Tengliang-Yingjiang Area, Western Yunnan: Constraints from Zircon U-Pb Ages and Hf Isotopes. Journal of Asian Earth Sciences, 53: 151–175.  https://doi.org/10.1016/j.jseaes.2011.06.018 Google Scholar
  54. Yang, L. Q., Gao, X., Shu, Q. H., 2017. Multiple Mesozoic Porphyry-Skarn Cu (Mo-W) Systems in Yidun Terrane, East Tethys: Constraints from Zircon U-Pb and Molybdenite Re-Os Geochronology. Ore Geology Reviews, 90: 813–826.  https://doi.org/10.1016/j.oregeorev.2017.01.030 Google Scholar
  55. Yang, L. Q., He, W. Y., Gao, X., et al., 2018. Mesozoic Multiple Magmatism and Porphyry-Skarn Cu-polymetallic Systems of the Yidun Terrane, Eastern Tethys: Implications for Subduction- And Transtension-Related Metallogeny. Gondwana Research, 62: 144–162.  https://doi.org/10.1016/j.gr.2018.02.009 Google Scholar
  56. Yuan, W. M., Bao, Z. K., Dong, J. Q., et al., 2007. Zircon and Apatite Fission Track Analyses on Mineralization Ages and Tectonic Activities of Tuwu-Yandong Porphyry Copper Deposit in Northern Xinjiang, China. Science in China Series D: Earth Sciences, 50(12): 1787–1795.  https://doi.org/10.1007/s11430-007-0130-9 Google Scholar
  57. Yuan, W. M., Mo, X. X., Zhang, A. K., et al., 2013. Fission Track Thermochronology Evidence for Multiple Periods of Mineralization in the Wulonggou Gold Deposits, Eastern Kunlun Mountains, Qinghai Province. Journal of Earth Science, 24(4): 471–478.  https://doi.org/10.1007/s12583-013-0362-x Google Scholar
  58. Yuan, W. M., Zheng, Q. G., Bao, Z. K., et al., 2009. Zircon Fission Track Thermochronology Constraints on Mineralization Epochs in Altai Mountains, Northern Xinjiang, China. Radiation Measurements, 44(9/10): 950–954.  https://doi.org/10.1016/j.radmeas.2009.10.094 Google Scholar
  59. Zhang, J., Wang, H., Li, S. H., et al., 2017. Paleogene Magmatism and Gold Metallogeny of the Jinping Terrane in the Ailaoshan Ore Belt, Sanjiang Tethyan Orogen (SW China): Geology, Deposit Type and Tectonic Setting. Ore Geology Reviews, 91: 620–637.  https://doi.org/10.1016/j.oregeorev.2017.08.032 Google Scholar
  60. Zhong, Y. T., He, C., Chen, N. S., et al., 2018. Tectonothermal Records in Migmatite-Like Rocks of the Guandi Complex in Zhoukoudian, Beijing: Implications for Late Neoarchean to Proterozoic Tectonics of the North China Craton. Journal of Earth Science, 29(5): 1254–1275.  https://doi.org/10.1007/s12583-018-0856-7 Google Scholar
  61. Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7–17.  https://doi.org/10.1016/j.lithos.2015.06.023 Google Scholar
  62. Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429–1454.  https://doi.org/10.1016/j.gr.2012.02.002 Google Scholar
  63. Zhuang, G. S., Johnstone, S. A., Hourigan, J., et al., 2018. Understanding the Geologic Evolution of Northern Tibetan Plateau with Multiple Thermochronometers. Gondwana Research, 58: 195–210.  https://doi.org/10.1016/j.gr.2018.02.014 Google Scholar
  64. Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2012. Triassic Collision in the Paleo-Tethys Ocean Constrained by Volcanic Activity in SW China. Lithos, 144/145: 145–160.  https://doi.org/10.1016/j.lithos.2012.04.020 Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Science Research InstituteChina University of GeosciencesBeijingChina

Personalised recommendations