Advertisement

Metamorphic Evolution and Tectonic Implications of the Granulitized Eclogites from the Luliangshan Terrane in the North Qaidam Ultrahigh Pressure Metamorphic Belt, NW China: New Constraints from Phase Equilibrium Modeling

  • Guisheng Zhou
  • Jianxin ZhangEmail author
  • Yunshuai Li
  • Zenglong Lu
  • Xiaohong Mao
  • Xia Teng
Article
  • 15 Downloads

Abstract

The granulitized eclogites from the Luliangshan terrane of the North Qaidam UHP metamorphic belt occur as lenses within pelitic gneisses and orthogneisses. Combined petrologic data and phase equilibrium modeling indicate a multi-stage metamorphic history of the granulitized eclogites: (1) an earlier eclogite facies metamorphism (P>18.5 kbar, T> 830 °C) is deduced from omphacite relics in the matrix and rare omphacite inclusions within garnet. The possible assemblage is garnet+omphacite+rutile+ quartz; (2) the early stage of high pressure granulite facies assemblages (garnet+clinopyroxene+ plagioclase+rutile+quartz+liquid) developed in the early decompression process has a P-T regime of 17.5 kbar and 852–858 °C, constrained by plagioclase and clinopyroxene inclusions in garnet. The late stage of high pressure granulite assemblages (garnet+clinopyroxene+amphibole+plagioclase+rutile+quartz+liquid) records an isothermal decompression process with the pressure successively declining from 17.5 to 14.7 kbar and to 11.3 kbar at 858 °C; (3) the later medium pressure granulite facies assemblage (garnet+ orthopyroxene+clinopyroxene+amphibole+plagioclase+ilmenite+liquid+quartz) indicates a drop in pressure and rise in temperature at P-T conditions of 7.6–7.7 kbar and 878–883 °C; (4) retrogressive amphibolite facies stage, which is represented by amphibole+plagioclase kelyphitic rims around garnet, formed under conditions of <5 kbar and <650 °C. The preservation of medium pressure granulite facies assemblage and the garnet composition feature constrain a following isobaric cooling path during late exhumation. This process suggests a clockwise P-T path and indicates that the granulitized eclogites record a high grade “Barrovian” metamorphic overprint at the middle-lower crust during exhumation. The present data show that the Luliangshan terrane is a “hot” HP-UHP terrane.

Key words

phase equilibrium modeling granulitized eclogite North Qaidam Luliangshan terrane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are most grateful to two reviewers for critical and constructive reviews for the manuscript. This work was financially supported by the National Natural Science Foundation of China (Nos. 41630207, 41572180) and the China Geological Survey (No. DD20160022). The final publication is available at Springer via https://doi.org/10.1007/s12583-019-0897-6.

References Cited

  1. Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2): 365–4. https://doi.org/10.1093/petrology/32.2365 CrossRefGoogle Scholar
  2. Cai, J., Liu, F. L., Liu, P. H., et al., 2014. Metamorphic P-T Path and Tectonic Implications of Pelitic Granulites from the Daqingshan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 241: 161–3. https://doi.org/10.1016/j.precamres.2013.11.012 CrossRefGoogle Scholar
  3. Cao, Y. T., Liu, L., Chen, D. L., et al., 2017. Partial Melting during Exhumation of Paleozoic Retrograde Eclogite in North Qaidam, Western China. Journal of Asian Earth Sciences, 148: 223–3. https://doi.org/10.1016/j.jseaes.2017.09.009 CrossRefGoogle Scholar
  4. Chen, D. L., Sun, Y., Liu, L., et al., 2005. Metamorphic Evolution of the Yuka Eclogite in the North Qaidam, NW China: Evidences from the Compositional Zonation of Garnet and Reaction Texture in the Rock. Acta Petrologica Sinica, 21(4): 1039–1048 (In Chinese with English Abstract)Google Scholar
  5. Chen, X., Xu, R. K., Zheng, Y. Y., et al., 2018. Petrology and Geochemistry of High Niobium Eclogite in the North Qaidam Orogen, Western China: Implications for an Eclogite Facies Metamorphosed Island Arc Slice. Journal of Asian Earth Sciences, 164: 380–3. https://doi.org/10.1016/j.jseaes.2018.07.003 CrossRefGoogle Scholar
  6. Cruciani, G., Franceschelli, M., Groppo, C., et al., 2012. Metamorphic Evolution of Non-Equilibrated Granulitized Eclogite from Punta de Li Tulchi (Variscan Sardinia) Determined through Texturally Controlled Thermodynamic Modelling. Journal of Metamorphic Geology, 30(7): 667–4. https://doi.org/10.1111/j.1525-1314.2012.00993.x CrossRefGoogle Scholar
  7. Frost, B. R., Chacko, T., 1989. The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites. Journal of Geology, 97(4): 435–4. https://doi.org/10.1086/629321 CrossRefGoogle Scholar
  8. Green, D. H., Ringwood, A. E., 1967. An Experimental Investigation of the Gabbro to Eclogite Transformation and Its Petrological Applications. Geochimica et Cosmochimica Acta, 31(5): 767–4. https://doi.org/10.1016/s0016-7037(67)80031-0 CrossRefGoogle Scholar
  9. Green, E. C. R., White, R. W., Diener, J. F. A., et al., 2016. Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 34(9): 845–4. https://doi.org/10.1111/jmg.12211 CrossRefGoogle Scholar
  10. Groppo, C., Lombardo, B., Rolfo, F., et al., 2007. Clockwise Exhumation Path of Granulitized Eclogites from the Ama Drime Range (Eastern Himalayas). Journal of Metamorphic Geology, 25(1): 51–4. https://doi.org/10.1111/j.1525-1314.2006.00678.x CrossRefGoogle Scholar
  11. Groppo, C., Rolfo, F., Liu, Y. C., et al., 2015. P-T Evolution of Elusive UHP Eclogites from the Luotian Dome (North Dabie Zone, China): How far can the Thermodynamic Modeling Lead Us?. Lithos, 226: 183–3. https://doi.org/10.1016/j.lithos.2014.11.013 CrossRefGoogle Scholar
  12. Harley, S. L., 1989. The Origins of Granulites: A Metamorphic Perspective. Geological Magazine, 126(3): 215–4. https://doi.org/10.1017/s0016756800022330 CrossRefGoogle Scholar
  13. Hensen, B. J., Green, D. H., 1971. Experimental Study of the Stability of Cordierite and Garnet in Pelitic Compositions at High Pressures and Temperatures. Contributions to Mineralogy and Petrology, 33(4): 309–4. https://doi.org/10.1007/bf00382571 CrossRefGoogle Scholar
  14. Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309–4. https://doi.org/10.1111/j.1525-1314.1998.00140.x CrossRefGoogle Scholar
  15. Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333–4. https://doi.org/10.1111/j.1525-1314.2010.00923.x CrossRefGoogle Scholar
  16. Holland, T. J. B., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 145(4): 492–4. https://doi.org/10.1007/s00410-003-0464-z CrossRefGoogle Scholar
  17. Korhonen, F. J., Brown, M., Clark, C., et al., 2013. Osumilite-Melt Interactions in Ultrahigh Temperature Granulites: Phase Equilibria Modelling and Implications for the P-T-t Evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology, 31(8): 881–4. https://doi.org/10.1111/jmg.12049 CrossRefGoogle Scholar
  18. Korhonen, F. J., Powell, R., Stout, J. H., 2012. Stability of Sapphirine+Quartz in the Oxidized Rocks of the Wilson Lake Terrane, Labrador: Calculated Equilibria in NCKFMASHTO. Journal of Metamorphic Geology, 30(1): 21–4. https://doi.org/10.1111/j.1525-1314.2011.00954.x CrossRefGoogle Scholar
  19. Korhonen, F. J., Saw, A. K., Clark, C., et al., 2011. New Constraints on UHT Metamorphism in the Eastern Ghats Province through the Application of Phase Equilibria Modelling and in situ Geochronology. Gondwana Research, 20(4): 764–4. https://doi.org/10.1016/j.gr.2011.05.006 CrossRefGoogle Scholar
  20. Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61(405): 295–4. https://doi.org/10.1180/minmag.1997.061.405.13 CrossRefGoogle Scholar
  21. Li, X. W., Wei, C. J., 2016. Phase Equilibria Modelling and Zircon Age Dating of Pelitic Granulites in Zhaojiayao, from the Jining Group of the Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 34(6): 595–4. https://doi.org/10.1111/jmg.12195 CrossRefGoogle Scholar
  22. Li, Y. S., Zhang, J. X., Mostofa, K. M. G., et al., 2018. Petrogenesis of Carbonatites in the Luliangshan Region, North Qaidam, Northern Tibet, China: Evidence for Recycling of Sedimentary Carbonate and Mantle Metasomatism within a Subduction Zone. Lithos, 322: 148–3. https://doi.org/10.1016/j.lithos.2018.10.010 CrossRefGoogle Scholar
  23. Liao, X. Y., Liu, L., Wang, Y. W., et al., 2016. Multi-Stage Metamorphic Evolution of Retrograde Eclogite with a Granulite-Facies Overprint in the Zhaigen Area of the North Qinling Belt, China. Gondwana Research, 30: 79–3. https://doi.org/10.1016/j.gr.2015.09.012 CrossRefGoogle Scholar
  24. Meng, F. C., Zhang, J. X., 2008. Contemporaneous of Early Palaeozoic Granite and High Temperature Metamorphism, North Qaidam Mountains, Western China. Acta Petrologica Sinica, 24(7): 1585–1594 (in Chinese with English Abstract)Google Scholar
  25. Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55–4. https://doi.org/10.1007/bf01226262 CrossRefGoogle Scholar
  26. Morrissey, L. J., Hand, M., Raimondo, T., et al., 2014. Long-Lived High-T, Low-P Granulite Facies Metamorphism in the Arunta Region, Central Australia. Journal of Metamorphic Geology, 32(1): 25–4. https://doi.org/10.1111/jmg.12056 CrossRefGoogle Scholar
  27. Nakamura, D., Hirajima, T., 2000. Granulite-Facies Overprinting of Ultrahigh-Pressure Metamorphic Rocks, Northeastern Su-Lu Region, Eastern China. Journal of Petrology, 41(4): 563–4. https://doi.org/10.1093/petrology/41.4.563 CrossRefGoogle Scholar
  28. O’Brien, P. J., 1999. Asymmetric Zoning Profiles in Garnet from HP-HT Granulite and Implications for Volume and Grain-Boundary Diffusion. Mineralogical Magazine, 63(2): 227–4. https://doi.org/10.1180/002646199548457 CrossRefGoogle Scholar
  29. O’Brien, P. J., 1997. Garnet Zoning and Reaction Textures in Overprinted Eclogites, Bohemian Massif, European Variscides: A Record of Their Thermal History during Exhumation. Lithos, 41(1/2/3): 119–133. https://doi.org/10.1016/s0024-4937(97)82008-7 CrossRefGoogle Scholar
  30. Powell, R., Holland, T. J. B., 2008. On Thermobarometry. Journal of Metamorphic Geology, 26(2): 155–4. https://doi.org/10.1111/j.1525-1314.2007.00756.x CrossRefGoogle Scholar
  31. Powell, R., Holland, T. J. B., Worley, B., 1998. Calculating Phase Diagrams Involving Solid Solutions via Non-Linear Equations, with Examples Using THERMOCALC. Journal of Metamorphic Geology, 16(4): 577–4. https://doi.org/10.1111/j.1525-1314.1998.00157.x CrossRefGoogle Scholar
  32. Rapp, R. P., Shimizu, N., Norman, M. D., 2003. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 425(6958): 605–4. https://doi.org/10.1038/nature02031 CrossRefGoogle Scholar
  33. Ren, Y. F., Chen, D. L., Kelsey, D. E., et al., 2018. Metamorphic Evolution of a Newly Identified Mesoproterozoic Oceanic Slice in the Yuka Terrane and Its Implications for a Multi-Cyclic Orogenic History of the North Qaidam UHPM Belt. Journal of Metamorphic Geology, 36(4): 463–4. https://doi.org/10.1111/jmg.12300 CrossRefGoogle Scholar
  34. Ren, Y. F., Chen, D. L., Kelsey, D. E., et al., 2017. Petrology and Geochemistry of the Lawsonite (Pseudomorph)-Bearing Eclogite in Yuka Terrane, North Qaidam UHPM Belt: An Eclogite Facies Metamorphosed Oceanic Slice. Gondwana Research, 42: 220–3. https://doi.org/10.1016/j.gr.2016.10.011 CrossRefGoogle Scholar
  35. Rushmer, T., 1991. Partial Melting of Two Amphibolites: Contrasting Experimental Results under Fluid-Absent Conditions. Contributions to Mineralogy and Petrology, 107(1): 41–4. https://doi.org/10.1007/bf00311184 CrossRefGoogle Scholar
  36. Rushmer, T., 1993. Experimental High-Pressure Granulites: Some Applications to Natural Mafic Xenolith Suites and Archean Granulite Terranes. Geology, 21(5): 411–4.  https://doi.org/10.1130/0091-7613(1993)021<0411:ehpgsa>2.3.co;2CrossRefGoogle Scholar
  37. Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa: Implications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117(4): 394–4. https://doi.org/10.1007/bf00307273 CrossRefGoogle Scholar
  38. Shimizu, H., Tsunogae, T., Santosh, M., et al., 2013. Phase Equilibrium Modelling of Palaeoproterozoic Ultrahigh-Temperature Sapphirine Granulite from the Inner Mongolia Suture Zone, North China Craton: Implications for Counterclockwise P-T Path. Geological Journal, 48(5): 456–4. https://doi.org/10.1002/gj.2504 CrossRefGoogle Scholar
  39. Song, S. G., Yang, J. S., Xu, Z. Q., et al., 2003. Metamorphic Evolution of the Coesite-Bearing Ultrahigh-Pressure Terrane in the North Qaidam, Northern Tibet, NW China. Journal of Metamorphic Geology, 21(6): 631–4. https://doi.org/10.1046/j.1525-1314.2003.00469.x CrossRefGoogle Scholar
  40. Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2006. Evolution from Oceanic Subduction to Continental Collision: A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 47(3): 435–4. https://doi.org/10.1093/petrology/egi080 CrossRefGoogle Scholar
  41. Song, S. G., Niu, Y. L., Su, L., et al., 2014. Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling: The Example of the North Qaidam UHPM Belt, NW China. Earth-Science Reviews, 129: 59–3. https://doi.org/10.1016/j.earscirev.2013.11.010 CrossRefGoogle Scholar
  42. Song, S. G., Su, L., Li, X. H., et al., 2012. Grenville-Age Orogenesis in the Qaidam-Qilian Block: The Link between South China and Tarim. Precambrian Research, 220/221: 9–22. https://doi.org/10.1016/j.precamres.2012.07.007 CrossRefGoogle Scholar
  43. Song, S. G., Su, L., Li, X. H., et al., 2010. Tracing the 850-Ma Continental Flood Basalts from a Piece of Subducted Continental Crust in the North Qaidam UHPM Belt, NW China. Precambrian Research, 183(4): 805–4. https://doi.org/10.1016/j.precamres.2010.09.008 CrossRefGoogle Scholar
  44. Song, S. G., Zhang, L. F., Niu, Y. L., 2004. Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China. American Mineralogist, 89(8/9): 1330–1336. https://doi.org/10.2138/am-2004-8-922 CrossRefGoogle Scholar
  45. Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2005. Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234(1/2): 99–118. https://doi.org/10.1016/j.epsl.2005.02.036 CrossRefGoogle Scholar
  46. Walsh, E. O., Hacker, B. R., 2004. The Fate of Subducted Continental Margins: Two-Stage Exhumation of the High-Pressure to Ultrahigh-Pressure Western Gneiss Region, Norway. Journal of Metamorphic Geology, 22(7): 671–4. https://doi.org/10.1111/j.1525-1314.2004.00541.x CrossRefGoogle Scholar
  47. Wei, C. J., Guan, X., Dong, J., 2017. HT-UHT Metamorphism of Metabasites and the Petrogenesis of TTGs. Acta Petrologica Sinica, 33(5): 1381–1404 (in Chinese with English Abstract)Google Scholar
  48. White, R. W., Powell, R., 2002. Melt Loss and the Preservation of Granulite Facies Mineral Assemblages. Journal of Metamorphic Geology, 20(7): 621–4. https://doi.org/10.1046/j.1525-1314.2002.00206_20_7.x Google Scholar
  49. White, R. W., Powell, R., Holland, T. J. B., et al., 2014. New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 32(3): 261–4. https://doi.org/10.1111/jmg.12071 CrossRefGoogle Scholar
  50. White, R. W., Powell, R., Holland, T. J. B., et al., 2000. The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions: Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497–4. https://doi.org/10.1046/j.1525-1314.2000.00269.x CrossRefGoogle Scholar
  51. Yang, J. J., Zhu, H., Deng, J. F., et al., 1994. The Discovery of Garnet Peridotite in Northem Chaidam Mountains and Its Significance. Acta Petrrologica et Mineralogica, 13(2): 97–105 (in Chinese with English Abstract)Google Scholar
  52. Yang, J. S., Xu, Z. Q., Zhang, J. X., et al., 2002. Early Palaeozoic North Qaidam UHP Metamorphic Belt on the North-Eastern Tibetan Plateau and a Paired Subduction Model. Terra Nova, 14(5): 397–4. https://doi.org/10.1046/j.1365-3121.2002.00438.x CrossRefGoogle Scholar
  53. Yang, J. S., Xu, Z. Q., Li, H. B., et al., 1998. The Eclogites have been Found in the Northern Qaidam Basin, Western China. Chinese Science Bulletin, 43(14): 1544–1549 (in Chinese)Google Scholar
  54. Yang, J. S., Xu, Z. Q., Song, S. G., et al., 2001. Discovery of Coesite in the North Qaidam Early Palaeozoic Ultrahigh Pressure (UHP) Metamorphic Belt, NW China. Acta Geologica Sinica, 75(2): 175–179 (in Chinese with English Abstract)Google Scholar
  55. Yang, J. Z., Liu, X. C., Wu, Y. B., et al., 2015. Zircon Record of Ocean-Continent Subduction Transition Process of Dulan UHPM Belt, North Qaidam. Journal of Earth Science, 26(5): 617–4. https://doi.org/10.1007/s12583-015-0585-0 CrossRefGoogle Scholar
  56. Yin, C. Q., Zhao, G. C., Wei, C. J., et al., 2014. Metamorphism and Partial Melting of High-Pressure Pelitic Granulites from the Qianlishan Complex: Constraints on the Tectonic Evolution of the Khondalite Belt in the North China Craton. Precambrian Research, 242: 172–3. https://doi.org/10.1016/j.precamres.2013.12.025 CrossRefGoogle Scholar
  57. Yu, S. Y., Zhang, J. X., Li, H. K., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Lu-Hf Isotopic Composition of Eclogites and Their Host Gneisses in the Dulan Area, North Qaidam UHP Terrane: New Evidence for Deep Continental Subduction. Gondwana Research, 23(3): 901–4. https://doi.org/10.1016/j.gr.2012.07.018 CrossRefGoogle Scholar
  58. Zhang, C., Holtz, F., Koepke, J., et al., 2013. Constraints from Experimental Melting of Amphibolite on the Depth of Formation of Garnet-Rich Restites, and Implications for Models of Early Archean Crustal Growth. Precambrian Research, 231: 206–3. https://doi.org/10.1016/j.precamres.2013.03.004 CrossRefGoogle Scholar
  59. Zhang, C., van Roermund, H., Zhang, L. F., et al., 2012. A Polyphase Metamorphic Evolution for the Xitieshan Paragneiss of the North Qaidam UHP Metamorphic Belt, Western China: In-situ EMP Monazite- and U-Pb Zircon SHRIMP Dating. Lithos, 136–139: 27–45. https://doi.org/10.1016/j.lithos.2011.07.024 CrossRefGoogle Scholar
  60. Zhang, G. B., Ellis, D. J., Christy, A. G., et al., 2009. UHP Metamorphic Evolution of Coesite-Bearing Eclogite from the Yuka Terrane, North Qaidam UHPM Belt, NW China. European Journal of Mineralogy, 21(6): 1287–4. https://doi.org/10.1127/0935-1221/2009/0021-1989 CrossRefGoogle Scholar
  61. Zhang, J. X., Meng, F. C., Yang, J. S., 2004. Eclogitic Metapelites in the Western Segment of the North Qaidam Mountains: Evidence on “in situ” Relationship between Eclogite and Its Country Rock. Science in China Series D: Earth Sciences, 47(12): 1102–4. https://doi.org/10.1360/02yd0311 CrossRefGoogle Scholar
  62. Zhang, J. X., Yang, J. S., Mattinson, C. G., et al., 2005. Two Contrasting Eclogite Cooling Histories, North Qaidam HP/UHP Terrane, Western China: Petrological and Isotopic Constraints. Lithos, 84(1/2): 51–76. https://doi.org/10.1016/j.lithos.2005.02.002 CrossRefGoogle Scholar
  63. Zhang, J. X., Meng, F. C., Yu, S. Y., 2007. Metamorphic History Recorded in High Pressure Mafic Granulites in the Luliangshan Mountains to the North of Qaidam Basin, Northwest China: Evidence from Petrology and Zircon SHRIMP Geochronology. Earth Science Frontiers, 14(1): 85–97 (in Chinese with English Abstract)Google Scholar
  64. Zhang, J. X., Mattinson, C. G., Meng, F., et al., 2008. Polyphase Tectonothermal History Recorded in Granulitized Gneisses from the North Qaidam HP/UHP Metamorphic Terrane, Western China: Evidence from Zircon U-Pb Geochronology. Geological Society of America Bulletin, 120(5/6): 732–749. https://doi.org/10.1130/b26093.1 CrossRefGoogle Scholar
  65. Zhang, J. X., Mattinson, C. G., Yu, S. Y., et al., 2010. U-Pb Zircon Geochronology of Coesite-Bearing Eclogites from the Southern Dulan Area of the North Qaidam UHP Terrane, Northwestern China: Spatially and Temporally Extensive UHP Metamorphism during Continental Subduction. Journal of Metamorphic Geology, 28(9): 955–4. https://doi.org/10.1111/j.1525-1314.2010.00901.x CrossRefGoogle Scholar
  66. Zhang, J. X., Yu, S. Y., Mattinson, C. G., 2017. Early Paleozoic Polyphase Metamorphism in Northern Tibet, China. Gondwana Research, 41: 267–3. https://doi.org/10.1016/j.gr.2015.11.009 CrossRefGoogle Scholar
  67. Zhang, Y. H., Wei, C. J., Lu, M. J., et al., 2018. P-T-t Evolution of the High-Pressure Mafic Granulites from Northern Hengshan, North China Craton: Insights from Phase Equilibria and Geochronology. Precambrian Research, 312: 1–3. https://doi.org/10.1016/j.precamres.2018.04.022 CrossRefGoogle Scholar
  68. Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2001. High-Pressure Granulites (Retrograded Eclogites) from the Hengshan Complex, North China Craton: Petrology and Tectonic Implications. Journal of Petrology, 42(6): 1141–4. https://doi.org/10.1093/petrology/42.6.1141 CrossRefGoogle Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  • Guisheng Zhou
    • 1
  • Jianxin Zhang
    • 1
    Email author
  • Yunshuai Li
    • 2
  • Zenglong Lu
    • 1
  • Xiaohong Mao
    • 1
  • Xia Teng
    • 1
  1. 1.Key Laboratory of Deep-Earth Dynamics of the Ministry of Land and Resources, Institute of GeologyChinese Academy of Geological SciencesBeijingChina
  2. 2.Institute of Surface-Earth System ScienceTianjin UniversityTianjinChina

Personalised recommendations