Advertisement

Journal of Earth Science

, Volume 30, Issue 5, pp 908–923 | Cite as

Eogenetic Karst in Interbedded Carbonates and Evaporites and Its Impact on Hydrocarbon Reservoir: A New Case from Middle Triassic Leikoupo Formation in Sichuan Basin, Southwest China

  • Hong Liu
  • Xiucheng TanEmail author
  • Ling Li
  • Xiong Ding
  • Jian Cao
  • Guang Yang
  • Teng Ma
Petroleum, Natural Gas Geology
  • 52 Downloads

Abstract

Karst in interbedded carbonates and evaporites has been reported to have important and complex impacts on reservoir. It is significant for exploration and karst geology. Here, we report such a new case from Middle Triassic Leikoupo Formation of Sichuan Basin, Southwest China. Stratigraphic incompleteness and the occurrence of unconformity provide evidence for the presence of eogenetic karst. Under the impact of this eogenetic karst, residual weathered and solution-collapse breccia, solution pores and silicification and dedolomitization have been observed. Classic stratigraphic zonation of karst is not readily distinguishable, which is ascribed to the stratigraphic collapse of carbonate rocks resulting from the dissolution of evaporites by lateral subsurface fluid flow. In terms of impact on reservoir quality, karst can generally improve the initial physical property of the porous layers in theory. However, subsurface fluid flow dissolved the evarporitic beds and facilitated the collapse of overlying strata. As a consequence, the lateral continuity of the reservoirs would be destroyed, and relatively high-quality reservoirs can only be developed with little collapse of overlying strata, reflecting reservoir heterogeneities. This may be a general feature of reservoir formation under the impact of karst in interbedded carbonates and evaporites.

Key words

karst carbonate reservoir evaporite Middle Triassic Leikoupo Formation Sichuan Basin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We sincerely thank anonymous reviewers for their constructive comments, which are helpful to improve the article substantially. We thank the editors for technical handling and editing of this manuscript. This work was funded by the “13th Five-Year Plan” National Science and Technology Major Project of China (No. 2016ZX05004002). The final publication is available at Springer via https://doi.org/10.1007/s12583-019-0888-7.

References Cited

  1. Acosta, J. A., Faz, A., Jansen, B., et al., 2011. Assessment of Salinity Status in Intensively Cultivated Soils under Semiarid Climate, Murcia, SE Spain. Journal of Arid Environments, 75(11): 1056–1066. https://doi.org/10.1016/j.jaridenv.2011.05.006 Google Scholar
  2. Agosta, F., Alessandroni, M., Antonellini, M., et al., 2010. From Fractures to Flow: A Field-Based Quantitative Analysis of an Outcropping Carbonate Reservoir. Tectonophysics, 490(3/4): 197–213. https://doi.org/10.1016/j.tecto.2010.05.005 Google Scholar
  3. Altiner, D., Ömer Yilmaz, Ý., Özgül, N., et al., 1999. High-Resolution Sequence Stratigraphic Correlation in the Upper Jurassic (Kimmeridgian)-Upper Cretaceous (Cenomanian) Peritidal Carbonate Deposits (Western Taurides, Turkey). Geological Journal, 34(12): 139–158.  https://doi.org/10.1002/(sici)1099-1034(199901/06)34:1/2<139::aid-gj818>3.3.co;2-z Google Scholar
  4. Amadi, F. O., Major, R. P., Baria, L. R., 2012. Origins of Gypsum in Deep Carbonate Reservoirs: Implications for Hydrocarbon Exploration and Production. AAPG Bulletin, 96(2): 375–390. https://doi.org/10.1306/05101110179 Google Scholar
  5. Andreassen, K., Nilssen, E. G., Ødegaard, C. M., 2007. Analysis of Shallow Gas and Fluid Migration within the Plio-Pleistocene Sedimentary Succession of the SW Barents Sea Continental Margin Using 3D Seismic Data. Geo-Marine Letters, 27(2/3/4): 155–171. https://doi.org/10.1007/s00367-007-0071-5 Google Scholar
  6. Berra, F., 2012. Sea-Level Fall, Carbonate Production, Rainy Days: How do they Relate? Insight from Triassic Carbonate Platforms (Western Tethys, Southern Alps, Italy). Geology, 40(3): 271–274. https://doi.org/10.1130/g32803.1 Google Scholar
  7. Brenchley, P. J., Marshall, J. D., Harper, D. A. T., et al., 2006. A Late Ordovician (Hirnantian) Karstic Surface in a Submarine Channel, Recording Glacio-Eustatic Sea-Level Changes: Meifod, Central Wales. Geological Journal, 41(1): 1–22. https://doi.org/10.1002/gj.1029 Google Scholar
  8. Burchette, T. P., Wright, V. P., Faulkner, T. J., 1990. Oolitic Sandbody Depositional Models and Geometries, Mississippian of Southwest Britain: Implications for Petroleum Exploration in Carbonate Ramp Settings. Sedimentary Geology, 68(1/2): 87–115. https://doi.org/10.1016/0037-0738(90)90121-9 Google Scholar
  9. Cai, C. F., He, W. X., Jiang, L., et al., 2014. Petrological and Geochemical Constraints on Porosity Difference between Lower Triassic Sour- and Sweet-Gas Carbonate Reservoirs in the Sichuan Basin. Marine and Petroleum Geology, 56: 34–50. https://doi.org/10.1016/j.marpetgeo.2014.04.003 Google Scholar
  10. Cao, Y. Q., Hu, K. R., 1988. A Preliminary Study on Karst Hydrochemical Field Modeling and Quantitative Evaluation of Erosion of Carbonate- Sulfate Formation. Journal of Changchun University of Earth Science, 18(1): 53–62 (in Chinese with English Abstract)Google Scholar
  11. Choi, B. Y., Yun, S. T., Mayer, B., et al., 2012. Hydrogeochemical Processes in Clastic Sedimentary Rocks, South Korea: A Natural Analogue Study of the Role of Dedolomitization in Geologic Carbon Storage. Chemical Geology, 306/307: 103–113. https://doi.org/10.1016/j.chemgeo.2012.03.002 Google Scholar
  12. Choquette, P. W., Pray, L. C., 1970. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. AAPG Bulletin, 54(2): 207–250. https://doi.org/10.1306/5d25c98b-16c1-11d7-8645000102c1865d Google Scholar
  13. Cooper, A. H., 2002. Environmental Problems Caused by Gypsum Karst and Salt Karst in Great Britain. Carbonates and Evaporites, 17(2): 116–120. https://doi.org/10.1007/bf03176477 Google Scholar
  14. De Meer, S., Spiers, C. J., Peach, C. J., 2000. Kinetics of Precipitation of Gypsum and Implications for Pressure—Solution Creep. Journal of the Geological Society, 157(2): 269–281. https://doi.org/10.1144/jgs.157.2.269 Google Scholar
  15. Ding, X., Tan, X. C., Li, L., et al., 2015. Characteristics and Dominating Factors of Reservoirs in Leikoupo Formation, Southwest Sichuan Basin. Geoscience, 29(3): 644–652 (in Chinese with English Abstract)Google Scholar
  16. Eberli, G. P., Masaferro, J. L., Rick-Sarg, J. F., 2004. Seismic Imaging of Carbonate Reservoirs and Systems. AAPG Memoir, 81: 1–9Google Scholar
  17. Einsiedl, F., Mayer, B., 2005. Evidence for Bacterial Sulfate Reduction in a Fissured—Porous Karst System in Southern Germany. AGU Fall Meeting Abstracts. American Geophysical Union, December, 2005, San FranciscoGoogle Scholar
  18. Feng, X. T., Ding, W. X., Zhang, D. X., 2009. Multi-Crack Interaction in Limestone Subject to Stress and Flow of Chemical Solutions. International Journal of Rock Mechanics and Mining Sciences, 46(1): 159–171. https://doi.org/10.1016/j.ijrmms.2008.08.001 Google Scholar
  19. Ferket, H., Swennen, R., Ortuño Arzate, S., et al., 2006. Fluid Flow Evolution in Petroleum Reservoirs with a Complex Diagenetic History: An Example from Veracruz, Mexico. Journal of Geochemical Exploration, 89(1/2/3): 108–111. https://doi.org/10.1016/j.gexplo.2005.11.040 Google Scholar
  20. Florea, L. J., Vacher, H. L., 2006. Springflow Hydrographs: Eogenetic vs. Telogenetic Karst. Ground Water, 44(3): 352–361. https://doi.org/10.1111/j.1745-6584.2005.00158.x Google Scholar
  21. Ford, D. C., 1989. Features of the Genesis of Jewel Cave and Wind Cave, Black Hills, South Dakota. National Speleological Society, 51(2): 100–110Google Scholar
  22. Gabrovšek, F., Dreybrodt, W., 2001. A Model of the Early Evolution of Karst Aquifers in Limestone in the Dimensions of Length and Depth. Journal of Hydrology, 240(3/4): 206–224. https://doi.org/10.1016/s0022-1694(00)00323-1 Google Scholar
  23. Galve, J. P., Gutiérrez, F., Remondo, J., et al., 2009. Evaluating and Comparing Methods of Sinkhole Susceptibility Mapping in the Ebro Valley Evaporite Karst (NE Spain). Geomorphology, 111(3/4): 160–172. https://doi.org/10.1016/j.geomorph.2009.04.017 Google Scholar
  24. Grime, J. P., 2006. Plant Strategies, Vegetation Processes, and Ecosystem Properties. John Wiley & Sons, Chichester. 403Google Scholar
  25. Guidry, S. A., Grasmueck, M., Carpenter, D. G., et al., 2007. Karst and Early Fracture Networks in Carbonates, Turks and Caicos Islands, British West Indies. Journal of Sedimentary Research, 77(6): 508–524. https://doi.org/10.2110/jsr.2007.052 Google Scholar
  26. Gutiérrez, F., Calaforra, J. M., Cardona, F., et al., 2008. Geological and Environmental Implications of the Evaporite Karst in Spain. Environmental Geology, 53(5): 951–965. https://doi.org/10.1007/s00254-007-0721-y Google Scholar
  27. Gutiérrez, F., Linares, R., Roqué, C., et al., 2012. Investigating Gravitational Grabens Related to Lateral Spreading and Evaporite Dissolution Subsidence by Means of Detailed Mapping, Trenching, and Electrical Resistivity Tomography (Spanish Pyrenees). Lithosphere, 4(4): 331–353. https://doi.org/10.1130/l202.1 Google Scholar
  28. Halbouty, M. T., Meyerhoff, A. A., King, R. E., et al., 1970. World’s Giant Oil and Gas Fields, Geologic Factors Affecting Their Formation, and Basin Classification: Part I: Giant Oil and Gas Fields. AAPG Special Volumes. 502–528Google Scholar
  29. Hammes, U., Lucia, F. J., Kerans, C., 1996. Reservoir Heterogeneity in Karst-Related Reservoirs: Lower Ordovician Ellenburger Group, West Texas. In: Stoudt, E. L., ed., Precambrian–Devonian Geology of the Franklin Mountains, West Texas—Analogs for Exploration and Production in Ordovician and Silurian Karsted Reservoirs in the Permian Basin. West Texas Geological Society, Midland TX. 99–117Google Scholar
  30. Hao, F., Zhang, X. F., Wang, C. W., et al., 2015. The Fate of CO2 Derived from Thermochemical Sulfate Reduction (TSR) and Effect of TSR on Carbonate Porosity and Permeability, Sichuan Basin, China. Earth-Science Reviews, 141: 154–177. https://doi.org/10.1016/j.earscirev.2014.12.001 Google Scholar
  31. He, J., Fang, S. X., Hou, F. H., et al., 2013. Vertical Zonation of Weathered Crust Ancient Karst and Reservoir Evaluation and Prediction—A Case Study of M55-M51 Sub-Members of Majiagou Formation in Gas Fields, Central Ordos Basin, NW China. Petroleum Exploration and Development, 40(5): 572–581. https://doi.org/10.1016/s1876-3804(13)60075-0 Google Scholar
  32. Heydari, E., 2000. Porosity Loss, Fluid Flow, and Mass Transfer in Limestone Reservoirs: Application to the Upper Jurassic Smackover Formation, Mississippi. AAPG Bulletin, 84(1): 100–118Google Scholar
  33. Hou, F. H., Fang, S. X., Shen, Z. G., et al., 2005. The Scale of Dolostone Bodies Palaeoweathering Karsting Hyperdiagenesis Exposure Phase. Marine Origin Petroleum Geology, 10(1): 19–30 (in Chinese with English Abstract)Google Scholar
  34. Hu, Z. S., Chen, Q. F., 1994. Paleo-Karst of the Lower Permian Carbonate Reservoir in the Southern Sichuan Basin and Its Relation to Natural Gas Accumulation. Natural Gas Geoscience, 23(5): 14–18 (in Chinese with English Abstract)Google Scholar
  35. Huang, J. Q., Ren, J. S., Jiang, C. F., et al., 1980. The Tectonics and Its Evolution of China. Science Press, Beijing. 124 (in Chinese)Google Scholar
  36. Johnson, K. S., 2005. Subsidence Hazards due to Evaporite Dissolution in the United States. Environmental Geology, 48(3): 395–409. https://doi.org/10.1007/s00254-005-1283-5 Google Scholar
  37. Johnson, K. S., 2008. Evaporite-Karst Problems and Studies in the USA. Environmental Geology, 53(5): 937–943. https://doi.org/10.1007/s00254-007-0716-8 Google Scholar
  38. Johnson, K. S., 2002. Evaporite Karst Problems in the United States. Geological Society of America, 34(6): 215Google Scholar
  39. Kalvoda, J., Kumpan, T., Bábek, O., et al., 2015. Upper Famennian and Lower Tournaisian Sections of the Moravian Karst (Moravo-Silesian Zone, Czech Republic): A Proposed Key Area for Correlation of the Conodont and Foraminiferal Zonations. Geological Journal, 50(1): 17–38. https://doi.org/10.1002/gj.2523 Google Scholar
  40. Kenny, R., Krinsley, D. H., 1998. Silicified Micropeloid Structures from the 1.1 Ga Mescal Limestone, North-Central Arizona: Probable Evidence for Precambrian Terrigeneous Life. Mountain Geologist, 35: 45–54Google Scholar
  41. Klimchouk, A. B., Aksem, S. D., 2002. Gypsum Karst in the Western Ukraine: Hydrochemistry and Solution Rates. Carbonates and Evaporites, 17(2): 142–153. https://doi.org/10.1007/bf03176480 Google Scholar
  42. Klimchouk, A., Cucchi, F., Calaforra, J., et al., 1996. Dissolution of Gypsum from Field Observations. International Journal of Speleology, 25(3/4): 37–48. https://doi.org/10.5038/1827-806x.25.3.3 Google Scholar
  43. Kosa, E., Hunt, D. W., 2006. Heterogeneity in Fill and Properties of Karst-Modified Syndepositional Faults and Fractures: Upper Permian Capitan Platform, New Mexico, U.S.A. Journal of Sedimentary Research, 76(1): 131–151. https://doi.org/10.2110/jsr.2006.08 Google Scholar
  44. Kuznetsov, V. G., Skobeleva, N. M., 2005. Silicification of Riphean Carbonate Sediments (Yurubcha-Tokhomo Zone, Siberian Craton). Lithology and Mineral Resources, 40(6): 552–563. https://doi.org/10.1007/s10987-005-0052-6 Google Scholar
  45. Latinwo, G. K., Aribike, D. S., Susu, A. A., et al., 2010. Effects of Different Filler Treatments on the Morphology and Mechanical Properties of Flexible Polyurethane Foam Composites. Nature and Science, 8(6): 23–31Google Scholar
  46. Li, G. H., Li, X., Yang, X. N., 2000. Controlling Factors of Sinian Gas Pools in Caledonian Paleouplift, Sichuan Basin. Oil & Gas Geology, 21(2): 80–83 (in Chinese with English Abstract)Google Scholar
  47. Li, L., Tan, X. C., Ding, X., et al., 2011. Difference in Depositional Characteristics between Intra-Platform and Margional-Platform Shoals in Leikoupo Formation, Sichuan Basin and Its Impact on Reservoirs. Acta Petrolei Sinica, 32(1): 70–76 (in Chinese with English Abstract)Google Scholar
  48. Li, L., Tan, X. C., Zhou, S. Y., et al., 2012. Sequence Lithofacies Paleography of Leikoupo Formation, Sichuan Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 34(4): 13–22 (in Chinese with English Abstract)Google Scholar
  49. Li, Q. F., Miao, S. D., Li, Y. X., et al., 2018. Reservoir Characteristics and Genesis of the Changxing Formation on the Margin of Yanting-Tongnan Trough, Central Sichuan Basin. Earth Science, 43(10): 3553–3567. https://doi.org/10.3799/dqkx.2018.313 (in Chinese with English Abstract)Google Scholar
  50. Liu, W. H., Zhang, D. W., Zhang, X. F., 2006. Influence of Hydrogenation and TSR (Thermochemical Sulfate Reduction) to Natural Gas Isotopic Composition. Acta Petrologica Sinica, 22(8): 2237–2242 (in Chinese with English Abstract)Google Scholar
  51. Liu, Y. K., Chang, X., 2003. Modeling of Burial and Subsidence History in Sichuan Basin. Chinese Journal of Geophysics, 46(2): 203–208 (in Chinese with English Abstract)Google Scholar
  52. Liu, Z. H., Dreybrodt, W., Li, H. J., 2006. Comparison of Dissolution Rate-Determining Mechanisms between Limestone and Dolomite. Earth Science—Journal of China University of Geosciences, 31(3): 411–416 (in Chinese with English Abstract)Google Scholar
  53. Liu, Z. H., Yuan, D. X., Dreybrodt, W., 2005. Comparative Study of Dissolution Rate-Determining Mechanisms of Limestone and Dolomite. Environmental Geology, 49(2): 274–279. https://doi.org/10.1007/s00254-005-0086-z Google Scholar
  54. Liu, Z. H., Dreybrodt, W., 2001. Dynamic Mechanism of Dolomite Solution under Different CO2 Partial Pressure. Science in China (Series B), 31(4): 377–384 (in Chinese)Google Scholar
  55. Lu, Y. R., Cooper, A. H., 1996. Gypsum Karst in China (in Gypsum Karst of the World). International Journal of Speleology, 25(3/4): 297–307Google Scholar
  56. Lu, Y. R., Zhang, F. E., Qi, J. X., et al., 2002a. Evaporite Karst and Resultant Geohazards in China. Carbonates and Evaporites, 17(2): 159–165. https://doi.org/10.1007/bf03176482 Google Scholar
  57. Lu, Y. R., Zhang, F. E., Yan, B. R., et al., 2002b. Mechanism of Karst Development in Sulphate Rocks and Its Main Geo-Environmental Impacts. Acta Geosicientia Sinica, 23(1): 1–6 (in Chinese with English Abstract)Google Scholar
  58. Ma, Y. S., 2007. Generation Mechanism of Puguang Gas Field in Sichuan Basin. Acta Petrolei Sinica, 28(2): 9–21 (in Chinese with English Abstract)Google Scholar
  59. Ma, Z. F., 1994. Reservoir Characteristics of the Weathered Paleocrust in the Central Ordos Basin. Natural Gas Geoscience, 6(5): 28–36 (in Chinese with English Abstract)Google Scholar
  60. Ma, Z. F., Zhou, S. X., Yu, Z. P., et al., 1999. The Weathered Paleocrust on the Ordovician in Ordos Basin and Its Relationship to Gas Accumulation. Petroleum Exploration and Development, 26(5): 21–23 (in Chinese with English Abstract)Google Scholar
  61. Martinez, M. I., White, W. B., 1999. A Laboratory Investigation of the Relative Dissolution Rates of the Lirio Limestone and the Isla de Mona Dolomite and Implications for Cave and Karst Development on Isla de Mona. Journal of Cave and Karst Studies, 61(1): 7–12Google Scholar
  62. Mees, F., 2003. Salt Mineral Distribution Patterns in Soils of the Otjomongwa Pan, Namibia. Catena, 54(3): 425–437. https://doi.org/10.1016/s0341-8162(03)00135-8 Google Scholar
  63. Meng, Q. R., Wang, E., Hu, J. M., 2005. Mesozoic Sedimentary Evolution of the Northwest Sichuan Basin: Implication for Continued Clockwise Rotation of the South China Block. Geological Society of America Bulletin, 117(3): 396–410. https://doi.org/10.1130/b25407.1 Google Scholar
  64. Meyers, W. J., 1988. Paleokarstic Features on Mississippian Limestone, New Mexico. In: James, N. P., Choquette, P. W., eds., Paleokarst. Springer-Verlag, New York. 306–328Google Scholar
  65. Négrel, P., Roy, S., Petelet-Giraud, E., et al., 2007. Long-Term Fluxes of Dissolved and Suspended Matter in the Ebro River Basin (Spain). Journal of Hydrology, 342(3/4): 249–260. https://doi.org/10.1016/j.jhydrol.2007.05.013 Google Scholar
  66. Oblik, P. E. Z. R. K., Depresij, P., Grèiji, V., 2004. The Role of Epikarst in the Morphogenesis of the Karstic Forms in Greece and specially of the Karstic Hollow Forms. Acta Carsologica, 33(1): 219–235Google Scholar
  67. Paskauskas, R., Kucinskiene, A., Zvikas, A., 2005. Sulfate-Reducing Bacteria in Gypsum Karst Lakes of Northern Lithuania. Microbiology, 74(6): 715–721. https://doi.org/10.1007/s11021-005-0129-1 Google Scholar
  68. Paukštys, B., Narbutas, V., 1996. Gypsum Karst of the Baltic Republics. International Journal of Speleology, 25(3/4): 279–284. https://doi.org/10.5038/1827-806x.25.3.21 Google Scholar
  69. Rahimpour-Bonab, H., Esrafili-Dizaji, B., Tavakoli, V., 2010. Dolomitization and Anhydrite Precipitation in Permo-Triassic Carbonates at the South Pars Gasfield, Offshore Iran: Controls on Reservoir Quality. Journal of Petroleum Geology, 33(1): 43–66. https://doi.org/10.1111/j.1747-5457.2010.00463.x Google Scholar
  70. Rahimpour-Bonab, H., Mehrabi, H., Navidtalab, A., et al., 2012. Flow Unit Distribution and Reservoir Modelling in Cretaceous Carbonates of the Sarvak Formation, Abteymour Oilfield, Dezful Embayment, SW Iran. Journal of Petroleum Geology, 35(3): 213–236. https://doi.org/10.1111/j.1747-5457.2012.00527.x Google Scholar
  71. Ren, M. E., Liu, Z. Z., Wang, F. Y., et al., 1983. Karst Introduction. Commercial Press, Beijing (in Chinese)Google Scholar
  72. Sando, W. J., 1985. Revised Mississippian Time Scale, Western Interior Region, Conterminous United States. USGS Bulletin, 1605: A15–A26Google Scholar
  73. Sando, W. J., 1988. Madison Limestone (Mississippian) Paleokarst: A Geologic Synthesis. In: James, N. P., Choquette, P. W., Paleokarst. Springer-Verlag, New York. 256–277Google Scholar
  74. Shalev, E., Lyakhovsky, V., Yechieli, Y., 2006. Salt Dissolution and Sinkhole Formation along the Dead Sea Shore. Journal of Geophysical Research: Solid Earth, 111(B3): 1–12. https://doi.org/10.1029/2005jb004038 Google Scholar
  75. Shen, A. J., Zhou, J. G., Xin, Y. G., et al., 2008. Origin of Triassic Leikoupo Dolostone Reservoirs in Sichuan Basin. Marine Origin Petroleum Geology, 13(4): 19–28 (in Chinese with English Abstract)Google Scholar
  76. Song, H. R., Huang, S. Y., 1998. Carbonate and Karst. Minerals and Rocks, 8(1): 9–17 (in Chinese with English Abstract)Google Scholar
  77. Song, W. Y., Liu, L. Q., Gan, X. Q., et al., 2012. Weathering Crust Karstification in Leikoupo Formation in Central Sichuan Area. Natural Gas Geoscience, 23(6): 1019–1024 (in Chinese with English Abstract)Google Scholar
  78. Surlyk, F., Hurst, J. M., Piasecki, S., et al., 1986. The Permian of the Western Margin of the Greenland Sea––A Future Exploration Target. In: Future Petroleum Provinces of the World. AAPG Special Volumes, M40: 629–659Google Scholar
  79. Sztanó, O., Krézsek, C., Magyar, I., et al., 2005. Sedimentary Cycles and Rhythms in a Sarmatian to Pannonian (Late Miocene) Transitional Section at Oarba de Mures/Marosorbó, Transylvanian Basin. Acta Geologica Hungarica, 48(3): 235–257. https://doi.org/10.1556/ageol.48.2005.3.1 Google Scholar
  80. Trzhtsinsky, Y. B., 2002. Human-Induced Activation of Gypsum Karst in the Southern Priangaria (East Siberia, Russia). Carbonates and Evaporites, 17(2): 154–158. https://doi.org/10.1007/bf03176481 Google Scholar
  81. Vacher, H. L., Mylroie, J. E., 2002. Eogenetic Karst from the Perspective of an Equivalent Porous Medium. Carbonates and Evaporites, 17(2): 182–196. https://doi.org/10.1007/bf03176484 Google Scholar
  82. Wang, B. Q., Zhang, G. S., 2006. Diagenesis of Ordovician Paleo-Karst Reservoir in the Sulige Area, the Ordos Basin. Experimental Petroleum Geology, 28(6): 518–528 (in Chinese with English Abstract)Google Scholar
  83. Wang, H. Y., Li, C., Hu, C. Y., et al., 2015. Spurious Thermoluminescence Characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and Its Implications for Marine Dissolved Organic Carbon Reservoir. Journal of Earth Science, 26(6): 883–892. https://doi.org/10.1007/s12583-015-0650-3 Google Scholar
  84. Wang, H., Liu, S. G., Qin, C., et al., 2009. Study on Petroleum Geological Conditions and Hydrocarbon Exploration Direction of Leikoupo Formation in the Centre and West of Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 36(6): 669–674 (in Chinese with English Abstract)Google Scholar
  85. Wang, Z. P., Lu, Z. Y., 2006. Important Role of Karstification in the Lower Permian Reservoir in Sichuan Basin. Petroleum Exploration and Development, 33(2): 141–144 (in Chinese with English Abstract)Google Scholar
  86. Wang, Z. S., Sha, Q. A., 1991. Solution-Collapse Brecciation of the Middle Ordovician Evaporates in North China. Scientia Geologica Sinica, (3): 246–254 (in Chinese with English Abstract)Google Scholar
  87. Wang, Z. Y., Li, L., Tan, X. C., et al., 2008. Types and Recognizable Indicators of Ordovician Carbonate Rock of Karstification in Tarim Basin. Journal of Southwest Petroleum University (Science & Technology Edition), 30(5): 11–14 (in Chinese with English Abstract)Google Scholar
  88. Weidlich, O., 2010. Meteoric Diagenesis in Carbonates below Karst Unconformities: Heterogeneity and Control Factors. Geological Society, London, Special Publications, 329(1): 291–315. https://doi.org/10.1144/sp329.12 Google Scholar
  89. Wu, J., Liu, S. G., Wang, G. Z., et al., 2016. Multi-Stage Hydrocarbon Accumulation and Formation Pressure Evolution in Sinian Dengying Formation-Cambrian Longwangmiao Formation, Gaoshiti-Moxi Structure, Sichuan Basin. Journal of Earth Science, 27(5): 835–845. https://doi.org/10.1007/s12583-016-0706-4 Google Scholar
  90. Wu, S. X., Li, H. T., Long, S. X., et al., 2011. A Study on Characteristics and Diagenesis of Carbonate Reservoirs in the Middle Triassic Leikoupo Formation in Western Sichuan Depression. Oil & Gas Geology, 32(4): 542–559 (in Chinese with English Abstract)Google Scholar
  91. Xiao, D., Tan, X. C., Xi, A. H., et al., 2016. An Inland Facies-Controlled Eogenetic Karst of the Carbonate Reservoir in the Middle Permian Maokou Formation, Southern Sichuan Basin, SW China. Marine and Petroleum Geology, 72: 218–233. https://doi.org/10.1016/j.marpetgeo.2016.02.001 Google Scholar
  92. Xing, F. C., Hu, H. R., Hou, M. C., et al., 2018. Carbonate Reservoirs Cycles and Assemblages under the Tectonic and Palaeogeography Control: A Case Study from Sichuan Basin. Earth Science, 43(10): 3540–3552. https://doi.org/10.3799/dqkx.2018.310 (in Chinese with English Abstract)Google Scholar
  93. Xu, H. L., Wei, G. Q., Jia, C. Z., et al., 2012. Tectonic Evolution of the Leshan-Longnüsi Paleo-Uplift and Its Control on Gas Accumulation in the Sinian Strata. Petroleum Exploration and Development, 39(4): 436–446. https://doi.org/10.1016/s1876-3804(12)60060-3 Google Scholar
  94. Yang, X. F., Tang, H., Wang, X. Z., et al., 2017. Dolomitization by Penesaline Sea Water in Early Cambrian Longwangmiao Formation, Central Sichuan Basin, China. Journal of Earth Science, 28(2): 305–314. https://doi.org/10.1007/s12583-017-0761-5 Google Scholar
  95. Youssef, M., El-Sorogy, A. S., 2015. Paleoecology of Benthic Foraminifera in Coral Reefs Recorded in the Jurassic Tuwaiq Mountain Formation of the Khashm Al-Qaddiyah Area, Central Saudi Arabia. Journal of Earth Science, 26(2): 224–235. https://doi.org/10.1007/s12583-015-0529-8 Google Scholar
  96. Yuste, A., Bauluz, B., Mayayo, M. J., 2015. Genesis and Mineral Transformations in Lower Cretaceous Karst Bauxites (NE Spain): Climatic Influence and Superimposed Processes. Geological Journal, 50(6): 839–857. https://doi.org/10.1002/gj.2604 Google Scholar
  97. Zeng, D. M., Wang, X. Z., Zhang, F., et al., 2007. Study on Reservoir of the Leikoupo Formation of Middle Triassic in Northwestern Sichuan Basin. Journal of Palaeogeography, 9(3): 253–266 (in Chinese with English Abstract)Google Scholar
  98. Zhai, G. M., 1989. Chinese Petroleum Geology (Vol. 10, Sichuan Oil and Gas Areas). Petroleum Industry Press, Beijing (in Chinese)Google Scholar
  99. Zhang, F. E., Lu, Y. R., 2001. Experimental Study on the Mechanism of Sulphate Karst. Hydrogeology and Engineering Geology, 5: 12–16 (in Chinese with English Abstract)Google Scholar
  100. Zhang, F. E., Lu, Y. R., Guo, X. H., et al., 2003. The Mechanism Related to the Formation of Compound Karstification. Earth Science Frontiers, 10(2): 495–500 (in Chinese with English Abstract)Google Scholar
  101. Zhang, J. Q., Geng, A. Q., Chen, H. D., et al., 1992. Paleokarst-Related Natural Gas Reservoirs of Majiagou Formation, Ordos Basin. Journal of Chengdu College of Geology, 19(4): 65–70 (in Chinese with English Abstract)Google Scholar
  102. Zhao, Q. X., 1991. The Unconformity between the Upper Triassic Xujiahe and Lower Triassic Leikoupo Formations Based on the Field Survey in the Nanshancun Outcrop. Acta Geologica Sichuan, 11(4): 310–311 (in Chinese with English Abstract)Google Scholar
  103. Zhao, R., Wu, Y. S., Jiang, H. X., et al., 2017. Oxygen Isotope Clue to Migration of Dolomitizing Fluid as Exampled by the Changxing Formation Dolomite at Panlongdong, Northeastern Sichuan. Journal of Earth Science, 28(2): 333–346. https://doi.org/10.1007/s12583-017-0724-x Google Scholar
  104. Zhao, W. Z., Shen, A. J., Pan, W. Q., et al., 2013. A Research on Carbonate Karst Reservoirs Classification and Its Implication on Hydrocarbon Exploration: Cases Studies from Tarim Basin. Acta Petrologica Sinica, 29(9): 3213–3222 (in Chinese with English Abstract)Google Scholar
  105. Zhong, Y. J., Chen, H. D., Lin, L. B., et al., 2011. Paleokarstification and Reservoir Distribution in the Middle Triassic Carbonates of the 4th Member of the Leikoupo Fornation, Northeastern Sichuan Basin. Acta Petrologica Sinica, 27(8): 2272–2280 (in Chinese with English Abstract)Google Scholar
  106. Zhou, W., Deng, H. C., Qiu, D. Z., et al., 2007. The Discovery and Significance of the Devonian Paleo-Reservoir in Tianjingshan Structure of the Northwest Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 34(4): 413–417 (in Chinese with English Abstract)Google Scholar
  107. Zhu, C. Q., Qiu, N. S., Cao, H. Y., et al., 2016. Paleogeothermal Reconstruction and Thermal Evolution Modeling of Source Rocks in the Puguang Gas Field, Northeastern Sichuan Basin. Journal of Earth Science, 27(5): 796–806. https://doi.org/10.1007/s12583-016-0909-8 Google Scholar
  108. Zhu, C. Q., Rao, S., Xu, M., et al., 2011. The Mesozoic Thermal Regime of the Sichuan Basin and the Relationship between It and the Structural and Sedimentary Action of the Foreland Basin Evolution. Chinese Journal of Geology, 46(1): 194–202 (in Chinese with English Abstract)Google Scholar

Copyright information

© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Oil and Gas Geology and ExploitationSouthwest Petroleum UniversityChengduChina
  2. 2.School of Earth Sciences and Technology, Branch of Sedimentology and Hydrocarbon Accumulation, CNPC Key Laboratory of Carbonate ReservoirSouthwest Petroleum UniversityChengduChina
  3. 3.Department of Earth SciencesNanjing UniversityNanjingChina
  4. 4.Institute of Petroleum Exploration and ExploitationPetroChina Southwest Oil and Gas Field CompanyChengduChina

Personalised recommendations